Skip to main content
Log in

\(hp\)-Optimal Interior Penalty Discontinuous Galerkin Methods for the Biharmonic Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We prove \(hp\)-optimal error estimates for interior penalty discontinuous Galerkin methods (IPDG) for the biharmonic problem with homogeneous essential boundary conditions. We consider tensor product-type meshes in two and three dimensions, and triangular meshes in two dimensions. An essential ingredient in the analysis is the construction of a global \(H^2\) piecewise polynomial approximants with \(hp\)-optimal approximation properties over the given meshes. The \(hp\)-optimality is also discussed for \(\mathcal C^0\)-IPDG in two and three dimensions, and the stream formulation of the Stokes problem in two dimensions. Numerical experiments validate the theoretical predictions and reveal that \(p\)-suboptimality occurs in presence of singular essential boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available on request.

References

  1. Ainsworth, M., Parker, C.: \({H}^2\)-stable polynomial liftings on triangles. SIAM J. Numer. Anal. 58(3), 1867–1892 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., Parker, C.: Preconditioning high order \(H^2\) conforming finite elements on triangles. Numer. Math. 148(2), 223–254 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Argyris, J.H., Fried, I., Scharpf, D.W.: The TUBA family of plate elements for the matrix displacement method. Aeronaut. J. 72(692), 701–709 (1968)

    Article  Google Scholar 

  4. Babuška, I., Suri, M.: The \(hp\) version of the finite element method with quasiuniform meshes. ESAIM Math. Model. Numer. Anal. 21(2), 199–238 (1987)

    Article  MATH  Google Scholar 

  5. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31(137), 45–59 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h-p-k\)-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A family of \(\cal{C} ^0\) finite elements for Kirchhoff plates I: error analysis. SIAM J. Numer. Anal. 45(5), 2047–2071 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beirão da Veiga, L., Niiranen, J., Stenberg, R.: A posteriori error analysis for the Morley plate element with general boundary conditions. Int. J. Numer. Methods Eng. 83(1), 1–26 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Gudi, T., Sung, L.-Y.: An a posteriori error estimator for a quadratic \(\cal{C} ^0\)-interior penalty method for the biharmonic problem. IMA J. Numer. Anal. 30(3), 777–798 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The mathematical theory of Finite Element Methods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  11. Brenner, S.C., Sung, L.-Y.: \(\cal{C} ^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(1), 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C., Wang, K., Zhao, J.: Poincaré-Friedrichs inequalities for piecewise \({H}^2\) functions. Numer. Funct. Anal. Optim. 25(5–6), 463–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(157), 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, Z.: Discontinuous Galerkin methods for the biharmonic problem on polygonal and polyhedral meshes. Int. J. Numer. Anal. Model. 16(5), 825–846 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Dong, Z., Mascotto, L., Sutton, O.J.: Residual-based a posteriori error estimates for \(hp\)-discontinuous Galerkin discretizations of the biharmonic problem. SIAM J. Numer. Anal. 59(3), 1273–1298 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Douglas, J., Jr., Dupont, T., Percell, P., Scott, R.: A family of finite elements with optimal approximation properties for various Galerkin methods for \(2\)nd and \(4\)th order problems. RAIRO. Anal. Numér. 13(3), 227–255 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. Eng. 191(34), 3669–3750 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Georgoulis, E.H.: Discontinuous Galerkin methods on shape-regular and anisotropic meshes. PhD thesis, University of Oxford (2003)

  19. Georgoulis, E.H., Hall, E., Melenk, J.M.: On the suboptimality of the \(p\)-version interior penalty discontinuous Galerkin method. J. Sci. Comput. 42(1), 54–67 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Georgoulis, E.H., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29(3), 573–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Georgoulis, E.H., Lasis, A.: A note on the design of \(hp\)-version interior penalty discontinuous Galerkin finite element methods for degenerate problems. IMA J. Numer. Anal. 26(2), 381–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. SIAM, New Delhi (2011)

    Book  MATH  Google Scholar 

  23. Gudi, T., Nataraj, N., Pani, A.K.: Mixed discontinuous Galerkin finite element method for the biharmonic equation. J. Sci. Comput. 37(2), 139–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Houston, P., Schwab, Ch., Süli, E.: Discontinuous \(hp\)-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kanschat, G., Sharma, N.: Divergence-conforming discontinuous Galerkin methods and \(C^0\) interior penalty methods. SIAM J. Numer. Anal. 52(4), 1822–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kozlov, V.A., Mazya, V.G.: Singularities in solutions to mathematical physics problems in non-smooth domains. In: Partial Differential Equations and Functional Analysis, pp. 174–206. Springer (1996)

  27. Lederer, P.L., Schöberl, J.: Polynomial robust stability analysis for \(H({\rm div})\)-conforming finite elements for the Stokes equations. IMA J. Numer. Anal. 38(4), 1832–1860 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aeronaut. Quart. 19, 149–169 (1968)

    Article  Google Scholar 

  29. Mozolevski, I., Süli, E.: A priori error analysis for the \(hp\)-version of the discontinuous Galerkin finite element method for the biharmonic equation. Comput. Methods Appl. Math. 3(4), 596–607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mozolevski, I., Süli, E., Bösing, P.R.: \(hp\)-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. J. Sci. Comput. 30(3), 465–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Perugia, I., Schötzau, D.: An \(hp\)-analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comput. 17(1), 561–571 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schwab, Ch.: \(p\)- and \(hp\)- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  33. Stamm, B., Wihler, T.: \(hp\)-optimal discontinuous Galerkin methods for linear elliptic problems. Math. Comput. 79(272), 2117–2133 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, vol. 2. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  35. Süli, E., Mozolevski, I.: \(hp\)-version interior penalty DGFEMs for the biharmonic equation. Comput. Methods Appl. Mech. Eng. 196(13–16), 1851–1863 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Suri, M.: The \(p\)-version of the finite element method for elliptic equations of order \(2l\). RAIRO Modél. Math. Anal. Numér. 24(2), 265–304 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, J., Wang, Y., Ye, X.: A robust numerical method for Stokes equations based on divergence-free \(H({\rm div})\) finite element methods. SIAM J. Sci. Comput. 31(4), 2784–2802 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, M., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103(1), 155–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mascotto.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.3

For the sake of presentation, throughout the proof, we shall write \(u_p\) instead of \({\mathcal {P}}_p^1u\).

We set \(u_p''\) as the Legendre expansion of \(u''\) truncated at order \(p-2\). In other words, expanding \(u''\) as a series of Legendre polynomials \(L_j(\xi )\), \(j \in {\mathbb {N}}_0\),

$$\begin{aligned} u''(\xi ) = \sum _{i=0}^{+\infty } b_j L_j(\xi ), \end{aligned}$$
(46)

we define

$$\begin{aligned} u_p''(\xi ):= \sum _{i=0}^{p-2} b_j L_j(\xi ). \end{aligned}$$
(47)

Standard properties of Legendre polynomials, see, e.g., [32, Appendix C], imply

$$\begin{aligned} {b_j = \frac{2j+1}{2} \int _{-1}^1 u''(\xi ) L_j(\xi ) d\xi .} \end{aligned}$$
(48)

For \(k\ge 0\), we recall [32, Lemma 3.10] that

$$\begin{aligned} \sum _{i=k}^{+\infty } \frac{2}{2i+1} \frac{(i+k)!}{(i-k)!} \vert b_i \vert ^2 = \int _{{\widehat{I}}} (1-\xi ^2)^k {\vert u^{({k+2})}(\xi ) \vert ^2} d\xi {\le {\left\| {u^{({k+2})}} \right\| }_{0,{\widehat{I}}}^2}. \end{aligned}$$
(49)

Using the orthogonality properties of Legendre polynomials [32, eq. (C.24)], the fact that \(s \le p-2\), and (49), we obtain

$$\begin{aligned} \begin{aligned} {\left\| {u''-u_p''} \right\| }_{0,{\widehat{I}}}^2&= \sum _{i=p-1}^{+\infty } \frac{2}{2i+1} \vert b_i \vert ^2 = \sum _{i=p-1}^{+\infty } \frac{2}{2i+1} \frac{(i+s)!}{(i-s)!} \vert b_i \vert ^2 \frac{(i-s)!}{(i+s)!}\\&\le \frac{(p-s-1)!}{(p+s-1)!} \sum _{i=s}^{+\infty } \frac{2}{2i+1} \frac{(i+s)!}{(i-s)!} \vert b_i \vert ^2 {\le \frac{(p-s-1)!}{(p+s-1)!} {\left\| {u^{({s+2})}} \right\| }_{0,{\widehat{I}}}^2}. \end{aligned} \end{aligned}$$

The two above equations yield the first bound in (12).

Next, we introduce

$$\begin{aligned} u_p'(\xi ) = \int _{-1}^\xi u_p''(t) dt + u'(-1). \end{aligned}$$
(50)

We have \(u_p'(-1) = u'(-1)\). Moreover, recalling that \(u_p''\) and \(u''\) have the same average over \({\widehat{I}}\), we also have

$$\begin{aligned} u_p'(1) = \int _{-1}^1 u_p''(t) dt + u'(-1) = \int _{-1}^1 u''(t) dt + u'(-1) = u'(1), \end{aligned}$$

which proves (11) for the derivative of \(u_p\) at the endpoints of \({\widehat{I}}\).

At this point, we observe

$$\begin{aligned} u'(\xi ) - u_p'(\xi ) = \int _{-1}^\xi (u''(t) - u_p''(t)) dt = \sum _{i=p-1}^{+\infty } b_i \int _{-1}^{\xi } L_i(t) dt =: \sum _{i=p-1}^{+\infty } b_i \phi _i(\xi ). \end{aligned}$$
(51)

Recall the Legendre differential equation [32, eq. (C.2.3)]

$$\begin{aligned} ((1-\xi ^2)L_i'(\xi ))' + i(i+1)L_i(\xi )=0 \qquad \forall i \in {\mathbb {N}}_0. \end{aligned}$$

Integrating the above identity over \((-1,\xi )\), \(\xi \in (-1,1)\), yields

$$\begin{aligned} \phi _i (\xi ) = -\frac{1}{i(i+1)} (1-\xi ^2) L_i'(\xi ). \end{aligned}$$
(52)

Recall the orthogonality property of the derivatives of Legendre polynomials [32, eq. (3.39)]:

$$\begin{aligned} \int _{-1}^1 (1-\xi ^2) L_i'(\xi ) L_j'(\xi ) d\xi = \frac{2\delta _{i,j}}{2i+1} \frac{(i+1)!}{(i-1)!}. \end{aligned}$$
(53)

Combining (52) and (53), for all i, \(j \in {\mathbb {N}}_0\), we deduce

$$\begin{aligned} \begin{aligned} \int _{-1}^1 (1-\xi ^2)^{-1} \phi _i(\xi ) \phi _j(\xi ) d\xi&= \frac{1}{i(i+1)j(j+1)} \int _{-1}^1 (1-\xi ^2) L_i'(\xi ) L_j'(\xi ) d\xi \\&= \frac{1}{i^2(i+1)^2} \frac{2\delta _{i,j}}{2i+1} \frac{(i+1)!}{(i-1)!} = \frac{2\delta _{i,j}}{i(i+1)(2i+1)}. \end{aligned} \end{aligned}$$
(54)

Using \(s \le p-2\), we write

$$\begin{aligned} \begin{aligned}&\int _{-1}^1 \vert u'(\xi ) -u_p'(\xi ) \vert ^2 d\xi = \int _{-1}^1 \vert \!\!\!\sum _{i=p-1}^{+\infty } b_i \phi _i(\xi ) \vert ^2 d\xi \le \int _{-1}^1 (1-\xi ^2)^{-1} \vert \!\!\! \sum _{i=p-1}^{+\infty } b_i \phi _i(\xi ) \vert ^2 d\xi \\&\overset{(54)}{\le } \sum _{i=p-1}^{+\infty } \frac{2\vert b_i \vert ^2}{i(i+1)(2i+1)} = \sum _{i=p-1}^{+\infty } \left( \frac{2\vert b_i \vert ^2}{2i+1} \frac{(i+s)!}{(i-s)!} \right) \frac{(i-s)!}{(i+s)!} \frac{1}{i(i+1)}\\&\le \frac{(p-s-1)!}{(p+s-1)!} \frac{1}{(p-1)p} \left( \sum _{i=s}^{+\infty } \frac{2\vert b_i \vert ^2}{2i+1} \frac{(i+s)!}{(i-s)!} \right) \overset{(49)}{\le } \frac{(p-s-1)!}{(p+s-1)!} \frac{1}{(p-1)p} {\left\| {u^{(s+2)}} \right\| }_{0,{\widehat{I}}}^2, \end{aligned} \end{aligned}$$

which is the second bound in (12).

Finally, we introduce

$$\begin{aligned} u_p(\xi ) = \int _{-1}^\xi u_p'(t) dt + u(-1). \end{aligned}$$
(55)

We observe that \(u_p(-1) = u(-1)\). Since \(L_1'(t)=1=L_0(t)\), standard manipulations imply

$$\begin{aligned} \begin{aligned} u_p(1)-u_p(-1)&= \int _{-1}^1 u_p'(t)dt \overset{(50)}{=} 2 u'(-1) + \int _{-1}^1 \left( \int _{-1}^t u_p''(x)dx \right) dt \\&\overset{(46),(51)}{=} 2 u'(-1) + \int _{-1}^1 \sum _{i=0}^{p-2} b_i \phi _i(t) dt = 2 u'(-1) + \sum _{i=0}^{p-2} b_i \int _{-1}^1 \phi _i(t) dt \\&\overset{(52)}{=} 2 u'(-1) - \sum _{i=0}^{p-1} b_i \int _{-1}^1 \frac{1}{i(i+1)} (1-t^2) L_i'(t) L_1'(t) dt\\&\overset{(53)}{=} 2 u'(-1) - \sum _{i=0}^{+\infty } b_i \int _{-1}^1 \frac{1}{i(i+1)} (1-t^2) L_i'(t) L_1'(t) dt\\&\overset{(52),(46)}{=} 2 u'(-1) + \int _{-1}^1 \left( \int _{-1}^t u''(x)dx \right) dt = \int _{-1}^1 u'(t) dt = u(1)-u(-1). \end{aligned} \end{aligned}$$

Using that \(u_p(-1) = u(-1)\), we deduce \(u_p(1)=u(1)\).

We are left with proving error estimates in the \(L^2\) norm. To this aim, observe that

$$\begin{aligned} u(\xi )-u_p(\xi ) = \int _{-1}^\xi (u'(t) - u_p'(t)) dt. \end{aligned}$$

We arrive at

$$\begin{aligned} u(\xi )-u_p(\xi ) \overset{(51)}{=} \sum _{i=p-1}^{+\infty } b_i \int _{-1}^{\xi } \phi _i(x) \ dx \ dt =: \sum _{i=p-1}^{+\infty } b_i \psi _i(\xi ). \end{aligned}$$
(56)

We prove certain orthogonality properties of the \(\psi _i\) functions. Recall the identity [32, eq. (C.2.5)]:

$$\begin{aligned} L_i(\xi ) = \frac{L'_{i+1}(\xi ) - L'_{i-1}(\xi )}{2i+1} \qquad \forall i\ge 2, \qquad \qquad L_0(\xi )=L_1'(\xi ). \end{aligned}$$

Integrating over \((-1,t)\), \(t\in (-1,1)\), and using \(L_{i+1}(-1)=L_{i-1}(-1)\), see [32, eq. (C.2.6)], we deduce

$$\begin{aligned} \phi _i(t)= \frac{L_{i+1}(\xi ) - L_{i-1}(\xi )}{2i+1}. \end{aligned}$$

Upon integrating the above identity over \((-1,\xi )\), \(\xi \in (-1,1)\), we arrive at

$$\begin{aligned} \psi _i(\xi ) = \frac{\int _{-1}^\xi L_{i+1}(t)\ dt - \int _{-1}^\xi L_{i-1}(t) \ dt}{2i+1} \overset{(51)}{=} \frac{\phi _{i+1}(\xi ) - \phi _{i-1}(t)}{2i+1}. \end{aligned}$$

With the notation \(\phi _{-1}(\xi )=0\), we get

$$\begin{aligned} \begin{aligned}&\psi _i(\xi ) \psi _j(\xi )\\&= \frac{1}{(2i+1)(2j+1)} \left( \phi _{i+1}(\xi ) \phi _{j+1}(\xi ) + \phi _{i-1}(\xi ) \phi _{j-1}(\xi ) - \phi _{i+1}(\xi ) \phi _{j-1}(\xi ) - \phi _{i-1}(\xi ) \phi _{j+1}(\xi ) \right) . \end{aligned} \end{aligned}$$

In (54), we proved that the \(\phi _i\) functions are orthogonal with respect to the \((1-\xi ^2)\)-weighted \(L^2\) inner product. Therefore, testing the above identity by \((1-\xi ^2)^{-1}\) and integrating over \((-1,1)\) we arrive at

$$\begin{aligned}{} & {} \int _{-1}^1 (1-\xi ^2)^{-1} \psi _i(\xi ) \psi _j(\xi ) \ d\xi \nonumber \\ {}{} & {} \quad = \frac{1}{(2i+1)(2j+1)} \left( \aleph _{i+1,j+1} + \aleph _{i-1,j-1} - \aleph _{i+1,j-1} - \aleph _{i-1,j+1} \right) , \end{aligned}$$
(57)

where, from (54),

$$\begin{aligned} \aleph _{\ell , k} = {\left\{ \begin{array}{ll} 0 &{} \quad \text {if } \ell \le 0 \text { or } k\le 0,\\ \frac{2\delta _{\ell ,k}}{\ell (\ell +1)(2\ell +1)} &{} \quad \text {if } \ell , \ k>0. \end{array}\right. } \end{aligned}$$

We provide explicit values for the expression in (57). If \(j \in \{ i-2, i, i+2 \}\), then

$$\begin{aligned} \int _{-1}^1 (1-\xi ^2)^{-1} \psi _i(\xi ) \psi _j(\xi ) \ d\xi = 0. \end{aligned}$$

If \(j=i\), then

$$\begin{aligned} \int _{-1}^1 (1-\xi ^2)^{-1} \psi _i(\xi ) \psi _i(\xi ) \ d\xi = \beth ^i_1 + \beth ^i_2, \end{aligned}$$

where

$$\begin{aligned} \beth _1^i:= \frac{1}{(2i+1)^2} \frac{2}{(i+1)(i+2)(2i+3)} \quad \forall i \in {\mathbb {N}}; \qquad \beth _2^i:= {\left\{ \begin{array}{ll} 0 &{}\quad \text {if } i=1, \\ \frac{1}{(2i+1)^2} \frac{2}{(i-1) i (2i-1)} &{} \quad \text {if } i\ge 2. \end{array}\right. } \end{aligned}$$
(58)

If \(j=i+2\), then

$$\begin{aligned} \int _{-1}^1 (1-\xi ^2)^{-1} \psi _i(\xi ) \psi _{i+2}(\xi ) \ d\xi = - \frac{1}{(2i+1)(2i+5)} \cdot \frac{2}{(i+1)(i+2)(2i+3)} =: -\beth ^i_3. \end{aligned}$$
(59)

If \(j=i-2\), then

$$\begin{aligned} \int _{-1}^1 (1-\xi ^2)^{-1} \psi _i(\xi ) \psi _{i-2}(\xi ) \ d\xi = - \beth ^i_4:= {\left\{ \begin{array}{ll} - \frac{1}{(2i+1)(2i-3)}\cdot \frac{2}{(i-1) i (2i-1)} &{}\quad \text {if } i\ge 3,\\ 0 &{} \quad \text {if } i\le 2. \end{array}\right. } \end{aligned}$$
(60)

In light of the above orthogonality properties, we can estimate the \(L^2\) approximation error as follows:

$$\begin{aligned} \begin{aligned} {\left\| {u-u_p} \right\| }^2_{0,{\widehat{I}}}&\overset{(56)}{=} {\left\| {\sum _{i=p-1}^{{+\infty }} b_i \psi _i} \right\| }^2_{0,{\widehat{I}}} \le \sum _{i,j=p-1}^{+\infty } {\left| {b_i \ b_j \int _{-1}^1 (1-\xi ^2)^{-1} \psi _i(\xi ) \psi _j(\xi ) d\xi } \right| }\\&\overset{(58), (59), (60)}{\le } \sum _{i=p-1}^{+\infty } \vert b_i \vert ^2 \left( \beth ^i_1 + \beth ^i_2 + \beth ^i_3 + \beth ^i_4 \right) . \end{aligned} \end{aligned}$$

We cope with the four terms on the right-hand side separately. We begin with \(\beth ^i_1\):

$$\begin{aligned} \begin{aligned} \sum _{i=p-1}^{+\infty } \vert b_i \vert ^2 \beth ^i_1&\overset{(58)}{=} \sum _{i=p-1}^{+\infty } \vert b_i \vert ^2 \frac{1}{(2i+1)^2} \cdot \frac{2}{(i+1)(i+2)(2i+3)}\\&= \sum _{i=p-1}^{+\infty } \left( \frac{2}{2i+1} \vert b_i \vert ^2 \frac{(i+s)!}{(i-s)!} \right) \left( \frac{(i-s)!}{(i+s)!} \frac{1}{(i+1)(i+2)(2i+1)(2i+3)} \right) \\&\overset{(49)}{\le } \frac{(p-s-1)!}{(p+s-1)!} \frac{1}{p(p+1)(2p-1)(2p+1)} {\left\| {u^{(s+2)}} \right\| }_{0,{\widehat{I}}}^2. \end{aligned} \end{aligned}$$

Next, we focus on \(\beth ^i_2\), \(i\ge 2\):

$$\begin{aligned} \begin{aligned} \sum _{i=\max (2,p-1)}^{+\infty } \vert b_i \vert ^2 \beth ^i_2&\overset{(58)}{=} \sum _{i=\max (2,p-1)}^{+\infty } \vert b_i \vert ^2 \frac{1}{(2i+1)^2} \cdot \frac{2}{(i-1) i (2i-1)}\\&= \sum _{i=\max (2,p-1)}^{+\infty } \left( \frac{2}{2i+1} \vert b_i \vert ^2 \frac{(i+s)!}{(i-s)!} \right) \left( \frac{(i-s)!}{(i+s)!} \frac{1}{(i-1) i (2i-1)(2i+1)} \right) \\&\overset{(49)}{\le } \frac{(p-s-1)!}{(p+s-1)!} \frac{1}{(p-2)(p-1)(2p-3)(2p-1)} {\left\| {u^{(s+2)}} \right\| }_{0,{\widehat{I}}}^2. \end{aligned} \end{aligned}$$

As for the term \(\beth ^i_3\), we proceed as follows:

$$\begin{aligned} \begin{aligned} \sum _{i=p-1}^{+\infty } \vert b_i \vert ^2 \beth ^i_3&\overset{(59)}{=} \sum _{i=p-1}^{+\infty } \vert b_i \vert ^2 \frac{1}{(2i+1)(2i+5)} \cdot \frac{2}{(i+1)(i+2)(2i+3)}\\&= \sum _{i=p-1}^{+\infty } \left( \frac{2}{2i+1} \vert b_i \vert ^2 \frac{(i+s)!}{(i-s)!} \right) \left( \frac{(i-s)!}{(i+s)!} \frac{1}{(i+1)(i+2)(2i+3)(2i+5)} \right) \\&\overset{(49)}{\le } \frac{(p-s-1)!}{(p+s-1)!} \frac{1}{p(p+2)(2p+1)(2p+3)} {\left\| {u^{(s+2)}} \right\| }_{0,{\widehat{I}}}^2. \end{aligned} \end{aligned}$$

Eventually, we cope with the term \(\beth ^i_4\), \(i\ge 3\):

$$\begin{aligned} \begin{aligned} \sum _{i=\max (3,p-1)}^{+\infty } \vert b_i \vert ^2 \beth ^i_4&\overset{(60)}{=} \sum _{i=\max (3,p-1)}^{+\infty } \vert b_i \vert ^2 \frac{1}{(2i+1)(2i-3)} \cdot \frac{2}{(i-1) i (2i-1)}\\&= \sum _{i=p-1}^{+\infty } \left( \frac{2}{2i+1} \vert b_i \vert ^2 \frac{(i+s)!}{(i-s)!} \right) \left( \frac{(i-s)!}{(i+s)!} \frac{1}{(i-1) i (2i-3)(2i-1)} \right) \\&\le \frac{(p-s-1)!}{(p+s-1)!} \frac{1}{(p-2)(p-1)(2p-5)(2p-3)} {\left\| {u^{(s+2)}} \right\| }_{0,{\widehat{I}}}^2. \end{aligned} \end{aligned}$$

Collecting the five bounds above concludes the proof.

Appendix B: Proof of Theorem 3.6 (2D Case)

The continuity properties (15) follow from the definition of the operator \({\mathcal {P}}_p\cdot \). Therefore, we only focus on the error estimates. We split the proof into several steps. Recall that \({\mathcal {P}}_p^x\) and \({\mathcal {P}}_p^y\) are the projections in Lemma 3.3 along the x and y directions, respectively.

Some identities The following identities are valid:

$$\begin{aligned} \partial _y{\mathcal {P}}_p^xu = {\mathcal {P}}_p^x(\partial _yu), \qquad \partial _x{\mathcal {P}}_p^yu = {\mathcal {P}}_p^y(\partial _xu). \end{aligned}$$
(61)

We only show the first one as the second can be proven analogously. For all \(y \in (-1,1)\), after writing \({\mathcal {P}}_p^xu (x,y)\) in integral form with respect to the x variable, we have

$$\begin{aligned} \begin{aligned}&{\mathcal {P}}_p^xu ( x,y ) = \int _{-1}^x \left[ \left( \int _{-1}^t \partial _x^2 {\mathcal {P}}_p^xu (x,y) dx \right) + \partial _xu(-1,y) \right] dt + u(-1,y)\\&\overset{(11)}{=} \int _{-1}^x \left[ \left( \int _{-1}^t \partial _x^2 {\mathcal {P}}_p^xu (x,y) dx \right) + \partial _xu(-1,y) \right] dt + u(-1,y)\\&\overset{(47),(48)}{=} \int _{-1}^x \left[ \left( \int _{-1}^t \partial _x^2 \left( \sum _{i=0}^{p-2} \frac{2i+1}{2} \int _{-1}^1 u(s,y) L_i(s) ds \right) L_i(x) dx \right) + \partial _xu(-1,y) \right] dt \\ {}&\quad + u(-1,y). \end{aligned} \end{aligned}$$

Taking the partial derivative with respect to y on both sides yields

$$\begin{aligned} \begin{aligned}&\partial _y{\mathcal {P}}_p^xu ( x,y )\\&= \int _{-1}^x \left[ \left( \int _{-1}^t \partial _x^2 \left( \sum _{i=0}^{p-2} \frac{2i+1}{2} \int _{-1}^1 \partial _yu(s,y) L_i(s) ds \right) L_i(x) dx \right) + \partial _x\partial _yu(-1,y) \right] dt\\ {}&\quad + \partial _yu(-1,y)\\&\overset{(47),(50),(55)}{=} {\mathcal {P}}_p^x\partial _yu ( x,y ). \end{aligned} \end{aligned}$$

\(L^2\) estimates Using the definition of \({\mathcal {P}}_p\), the triangle inequality, the one dimensional approximation properties (13), the third stability property in (14), and the identities (61) we write

$$\begin{aligned} \begin{aligned} {\left\| {u-{\mathcal {P}}_pu} \right\| }_{0,{\widehat{Q}}}&\le {\left\| {u-{\mathcal {P}}_p^xu} \right\| }_{0,{\widehat{Q}}} + {\left\| {{\mathcal {P}}_p^x(u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s-2} {\left\| {\partial _x^{s+2} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {u-{\mathcal {P}}_p^yu} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x^2 (u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}}\\&= p^{-s-2} {\left\| {\partial _x^{s+2} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {u-{\mathcal {P}}_p^yu} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x^2 u-{\mathcal {P}}_p^y\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}. \end{aligned} \end{aligned}$$

The assertion follows using again the one dimensional approximation properties (13).

\(H^1\) estimates First, we cope with the bound on the derivative with respect to x. Adding and subtracting \({\mathcal {P}}_p^xu\), and using the triangle inequality yield

$$\begin{aligned} \begin{aligned} {\left\| {\partial _x(u-{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}}&\le {\left\| {\partial _x(u-{\mathcal {P}}_p^xu)} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x{\mathcal {P}}_p^x(u- {\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}} =: T_1 + T_2. \end{aligned} \end{aligned}$$
(62)

As for the term \(T_1\), we use the one dimensional approximation properties (13) and get

$$\begin{aligned} T_1 \lesssim p^{-s-1} {\left\| {\partial _x^{s+2} u} \right\| }_{0,{\widehat{Q}}}. \end{aligned}$$
(63)

As for the term \(T_2\), we use the second stability estimate in (14) and get

$$\begin{aligned} T_2 \lesssim {\left\| {\partial _x(u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}} + p^{-1} {\left\| {\partial _x^2 (u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}}. \end{aligned}$$

Thanks to the identities (61) and the one dimensional approximation properties (13), we can estimate the term \(T_2\) from above as follows:

$$\begin{aligned} T_2&\lesssim p^{-1} {\left\| {\partial _x^2 u - {\mathcal {P}}_p^y\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}\nonumber \\\lesssim & {} p^{-s-1} \left( {\left\| {\partial _x\partial _y^{s+1} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^{s} u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned}$$
(64)

Collecting the estimates (63) and (64) in (62), we arrive at

$$\begin{aligned} {\left\| {\partial _x(u-{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}} \lesssim p^{-s-1} \left( {\left\| {\partial _x^{s+2}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y^{s+1}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^{s}u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned}$$

With similar arguments for the y derivative term, we deduce (17).

\(H^2\) estimates We begin by showing an upper bound on the second derivative with respect to x. Using the triangle inequality, the one dimensional approximation properties (13), the stability properties (14), and the identities (61), we obtain

$$\begin{aligned} \begin{aligned} {\left\| {\partial _x^2 (u-{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}}&\le {\left\| {\partial _x^2 (u-{\mathcal {P}}_p^xu)} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 {\mathcal {P}}_p^x(u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} {\left\| {\partial _x^{s+2} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 (u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}}\\ {}&= p^{-s} {\left\| {\partial _x^{s+2} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 u-{\mathcal {P}}_p^y\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} \left( {\left\| {\partial _x^{s+2} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^{s} u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned} \end{aligned}$$

Analogously, we can prove

$$\begin{aligned} {\left\| {\partial _y^2 (u-{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}} \lesssim p^{-s} \left( {\left\| {\partial _y^{s+2} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^{s} \partial _y^2 u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned}$$

Eventually, we cope with the mixed derivative term. Using the triangle inequality and the identities (61), we get

$$\begin{aligned} \begin{aligned} {\left\| {\partial _x\partial _y(u-{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}}&\le {\left\| {\partial _x\partial _y(u-{\mathcal {P}}_p^xu)} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y{\mathcal {P}}_p^x(u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}}\\&= {\left\| {\partial _x(\partial _yu-{\mathcal {P}}_p^x\partial _yu)} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x{\mathcal {P}}_p^x\partial _y(u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}} =: S_1 + S_2. \end{aligned} \end{aligned}$$
(65)

We estimate the two terms \(S_1\) and \(S_2\) separately. Using the one dimensional approximation properties (13), we can write

$$\begin{aligned} \begin{aligned} S_1&\lesssim p^{-s} {\left\| {\partial _x^{s+1} \partial _yu} \right\| }_{0,{\widehat{Q}}}. \end{aligned} \end{aligned}$$
(66)

On the other hand, using the one dimensional approximation properties (13) and the stability properties (14), we get

$$\begin{aligned} \begin{aligned} S_2&\lesssim {\left\| {\partial _x\partial _y(u-{\mathcal {P}}_p^yy)} \right\| }_{0,{\widehat{Q}}} + p^{-1} {\left\| {\partial _x^2 \partial _y(u-{\mathcal {P}}_p^yu)} \right\| }_{0,{\widehat{Q}}}\\&= {\left\| {\partial _y(\partial _xu-{\mathcal {P}}_p^y\partial _xy)} \right\| }_{0,{\widehat{Q}}} + p^{-1} {\left\| {\partial _y(\partial _x^2 u-{\mathcal {P}}_p^y\partial _x^2 u)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} \left( {\left\| {\partial _x\partial _y^{s+1}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^{s} u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned} \end{aligned}$$
(67)

Collecting the estimates (66) and (67) in (65), we arrive at

$$\begin{aligned} {\left\| {\partial _x\partial _y(u-{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}} \lesssim p^{-s} \left( {\left\| {\partial _x^{s+1} \partial _yu} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y^{s+1}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^{s} u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned}$$

Combining the estimates on all second derivatives terms, we obtain (18).

Appendix C: Proof of Theorem 3.6 (3D Case)

The continuity properties follow exactly as in the two dimensional case. Thus, we only show the details for the approximation properties. We split the proof in several steps. Recall that \({\mathcal {P}}_p^x\), \({\mathcal {P}}_p^y\), and \({\mathcal {P}}_p^z\) are the projections in Lemma 3.3 along the x, y, and z directions, respectively.

Some identities Analogous to their two dimensional counterparts in (61), we have the following identities:

$$\begin{aligned} \begin{aligned}&\partial _y{\mathcal {P}}_p^xu = {\mathcal {P}}_p^x(\partial _yu), \qquad \partial _x{\mathcal {P}}_p^yu = {\mathcal {P}}_p^y(\partial _xu), \qquad \partial _y{\mathcal {P}}_p^zu = {\mathcal {P}}_p^z(\partial _yu),\\&\partial _z{\mathcal {P}}_p^yu = {\mathcal {P}}_p^y(\partial _zu), \qquad \partial _x{\mathcal {P}}_p^zu = {\mathcal {P}}_p^z(\partial _xu), \qquad \partial _z{\mathcal {P}}_p^xu = {\mathcal {P}}_p^x(\partial _zu). \end{aligned} \end{aligned}$$
(68)

\(L^2\) estimates The triangle inequality and the one dimensional approximation properties (13) imply

$$\begin{aligned} \begin{aligned} {\left\| {u-{\mathcal {P}}_pu} \right\| }_{0,{\widehat{Q}}}&\le {\left\| {u-{\mathcal {P}}_p^xu} \right\| }_{0,{\widehat{Q}}} + {\left\| {{\mathcal {P}}_p^x(u-{\mathcal {P}}_p^y{\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}}\\ {}&\lesssim p^{-s-2}{\left\| {\partial _x^{s+2}u} \right\| }_{0,{\widehat{Q}}} \!\!\!+ {\left\| {{\mathcal {P}}_p^x(u-{\mathcal {P}}_p^y{\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}}. \end{aligned} \end{aligned}$$

We focus on the second term. To this aim, we use the stability properties (14), the triangle inequality, the one dimensional approximation properties (13), and the identities (68), and deduce

$$\begin{aligned} \begin{aligned}&{\left\| {{\mathcal {P}}_p^x(u-{\mathcal {P}}_p^y{\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}} \le {\left\| {u - {\mathcal {P}}_p^y{\mathcal {P}}_p^zu} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x^2 u - {\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}\\&\lesssim {\left\| {u - {\mathcal {P}}_p^yu} \right\| }_{0,{\widehat{Q}}} + {\left\| {{\mathcal {P}}_p^y(u - {\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x^2 u - {\mathcal {P}}_p^y\partial _x^2 u} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {{\mathcal {P}}_p^y(\partial _x^2 u - {\mathcal {P}}_p^z\partial _x^2 u)} \right\| }_{0,{\widehat{Q}}} \\&\lesssim p^{-s -2} {\left\| {\partial _y^{s+2}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {u-{\mathcal {P}}_p^zu} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _y^2 u - {\mathcal {P}}_p^z\partial _y^2 u} \right\| }_{0,{\widehat{Q}}} + p^{-s-4} {\left\| {\partial _x^2\partial _y^2\partial _z^{s-2}u} \right\| }_{0,{\widehat{Q}}}\\&\quad +p^{-2} {\left\| {\partial _x^2u-{\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}} + p^{-4} {\left\| {\partial _x^2 \partial _y^2 u - {\mathcal {P}}_p^z\partial _x^2 \partial _y^2 u} \right\| }_{0,{\widehat{Q}}}. \end{aligned} \end{aligned}$$

The \(L^2\) estimates eventually follow from the one dimensional approximation properties (13).

\(H^1\) estimates We show the details for the x derivative, as the other two cases can be dealt with analogously. The triangle inequality and the one dimensional approximation properties (13) imply

$$\begin{aligned} \begin{aligned} {\left\| {\partial _x(u -{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}}&\lesssim {\left\| {\partial _x(u -{\mathcal {P}}_p^xu)} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x{\mathcal {P}}_p^x(u -{\mathcal {P}}_p^y{\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s-1} {\left\| {\partial _x^{s+2}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x{\mathcal {P}}_p^x(u -{\mathcal {P}}_p^y{\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}}. \end{aligned} \end{aligned}$$

We focus on the second term on the right-hand side. The stability properties (14) and the identities (68) entail

$$\begin{aligned} {\left\| {\partial _x{\mathcal {P}}_p^x(u -{\mathcal {P}}_p^y{\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}} \lesssim {\left\| {\partial _xu - {\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _xu} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x^2 u - {\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}} =: T_1+T_2. \end{aligned}$$

As for the term \(T_1\), the triangle inequality, the identities (68), and the one dimensional approximation properties (13) imply

$$\begin{aligned} \begin{aligned} T_1&\!\lesssim \! {\left\| {\partial _xu \!-\! {\mathcal {P}}_p^y\partial _xu} \right\| }_{0,{\widehat{Q}}} + {\left\| {{\mathcal {P}}_p^y(\partial _xu \!-\! {\mathcal {P}}_p^z\partial _xu)} \right\| }_{0,{\widehat{Q}}}\\ {}&\lesssim \! p^{-s-1} {\left\| {\partial _x\partial _y^{s+1} u } \right\| }_{0,{\widehat{Q}}} + {\left\| {{\mathcal {P}}_p^y(\partial _xu \!-\! {\mathcal {P}}_p^z\partial _xu)} \right\| }_{0,{\widehat{Q}}}. \end{aligned} \end{aligned}$$

The second term on the right-hand side can be estimated using the stability properties (14), the identities (68), and the one dimensional approximation properties (13):

$$\begin{aligned} \begin{aligned}&{\left\| {{\mathcal {P}}_p^y(\partial _xu \!-\! {\mathcal {P}}_p^z\partial _xu)} \right\| }_{0,{\widehat{Q}}} \lesssim {\left\| {\partial _xu \!-\! {\mathcal {P}}_p^z\partial _xu} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x\partial _y^2 u \!-\! {\mathcal {P}}_p^z\partial _x\partial _y^2 u)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s-1} \left( {\left\| {\partial _x\partial _z^{s+1}u} \right\| }_{0,{\widehat{Q}}} +{\left\| {\partial _x\partial _y^2 \partial _x^{s-1}u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned} \end{aligned}$$

With similar arguments based on substituting \(\partial _xu\) by \(\partial _x^2 u\), we find an upper bound for \(T_2\):

$$\begin{aligned} T_2 \lesssim p^{-s-1} \left( {\left\| {\partial _x^2 \partial _y^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _z^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2\partial _y^2 \partial _z^{s-2}u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned}$$

Collecting the above estimates, we arrive at

$$\begin{aligned} \begin{aligned}&{\left\| {\partial _x(u -{\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}} \lesssim p^{-s-1} \Big ( {\left\| {\partial _x^{s+2} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y^{s+1} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _z^{s+1} u} \right\| }_{0,{\widehat{Q}}} \\&\quad + {\left\| {\partial _x\partial _y^2 \partial _z^{s-1} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^s u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _z^{s} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^2 \partial _z^{s-2} u} \right\| }_{0,{\widehat{Q}}} \Big ). \end{aligned} \end{aligned}$$

By similar arguments on the y and x partial derivatives, we deduce (20).

\(H^2\) estimates First, we show the details for the second x derivative, since the second y and z derivatives can be dealt with analogously. The triangle inequality, the one dimensional approximation properties (13), and the identities (68) imply

$$\begin{aligned} \begin{aligned} {\left\| {\partial _x^2 (u - {\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}}&\le {\left\| {\partial _x^2 (u - {\mathcal {P}}_p^xu)} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 {\mathcal {P}}_p^x(u - {\mathcal {P}}_p^y{\mathcal {P}}_p^zu)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} {\left\| {\partial _x^{s+2}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 u - {\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}. \end{aligned} \end{aligned}$$

We are left with estimating the second term on the right-hand side. Applying a further triangle inequality, the one dimensional approximation properties (13), and the stability properties (14), we arrive at

$$\begin{aligned} \begin{aligned} {\left\| {\partial _x^2 u - {\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}&\le {\left\| {\partial _x^2 u - {\mathcal {P}}_p^y\partial _x^2 u} \right\| }_{0,{\widehat{Q}}} + {\left\| {{\mathcal {P}}_p^y(\partial _x^2 u - {\mathcal {P}}_p^z\partial _x^2 u)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} {\left\| {\partial _x^2 \partial _y^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 u - {\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x^2 \partial _y^2 u - {\mathcal {P}}_p^z\partial _x^2\partial _y^2 u} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} \left( {\left\| {\partial _x^2 \partial _y^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _z^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^2 \partial _z^{s-2}u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned} \end{aligned}$$

Collecting the two above estimate above gives

$$\begin{aligned} {\left\| {\partial _x^2 (u - {\mathcal {P}}_pu)} \right\| }_{0,{\widehat{Q}}} \lesssim p^{-s} \left( {\left\| {\partial _x^{s+2}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _z^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^2 \partial _z^{s-2}u} \right\| }_{0,{\widehat{Q}}} \right) .\nonumber \\ \end{aligned}$$
(69)

Next, we focus on the mixed xy derivative and observe that the yz and xz counterparts are dealt with analogously. Using the triangle inequality, the one dimensional approximation properties (13), the identities (68), and the stability properties (14) leads us to

$$\begin{aligned} \begin{aligned}&{\left\| {\partial _x\partial _yu - {\mathcal {P}}_p\partial _x\partial _yu} \right\| }_{0,{\widehat{Q}}} \le {\left\| {\partial _x\partial _yu - {\mathcal {P}}_p^x\partial _x\partial _yu} \right\| }_{0,{\widehat{Q}}} + {\left\| {{\mathcal {P}}_p^x(\partial _x\partial _yu - {\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _x\partial _yu)} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} {\left\| {\partial _x^{s+1}\partial _yu} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _y\partial _xu - \partial _y{\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _xu} \right\| }_{0,{\widehat{Q}}} + p^{-1} {\left\| {\partial _y\partial _x^2 u - \partial _y{\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}\\&= p^{-s} {\left\| {\partial _x^{s+1}\partial _yu} \right\| }_{0,{\widehat{Q}}} + T_3+T_4. \end{aligned} \end{aligned}$$

We estimate the terms A and B separately. First, we focus on A. Using the triangle inequality, the one dimensional approximation properties (13), the identities (68), and the stability properties (14), entail

$$\begin{aligned} \begin{aligned} T_3&\le {\left\| {\partial _y\partial _xu - \partial _y{\mathcal {P}}_p^y\partial _xu} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _y{\mathcal {P}}_p^y\partial _xu - \partial _y{\mathcal {P}}_p^y\partial _xu} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} {\left\| {\partial _x\partial _y^{s+1}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _y\partial _xu - {\mathcal {P}}_p^z\partial _y\partial _xu} \right\| }_{0,{\widehat{Q}}} + p^{-1} {\left\| {\partial _y^2\partial _xu - {\mathcal {P}}_p^z\partial _y^2\partial _xu} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} \left( {\left\| {\partial _x\partial _y^{s+1}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y\partial _z^{s}u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y^2 \partial _z^{s-1}u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned} \end{aligned}$$

Next, we focus on the term B. Using the triangle inequality, the one dimensional approximation properties (13), the identities (68), and the stability properties (14), leads to

$$\begin{aligned} \begin{aligned} T_4&\le p^{-1} {\left\| {\partial _y\partial _x^2 u - \partial _y{\mathcal {P}}_p^y\partial _x^2 u} \right\| }_{0,{\widehat{Q}}} + p^{-1} {\left\| {\partial _y{\mathcal {P}}_p^y\partial _x^2 u - \partial _y{\mathcal {P}}_p^y{\mathcal {P}}_p^z\partial _x^2 u} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} {\left\| {\partial _x^2\partial _y^{s}} \right\| }_{0,{\widehat{Q}}} + p^{-1} {\left\| {\partial _y\partial _x^2 u - {\mathcal {P}}_p^z\partial _y\partial _x^2 u} \right\| }_{0,{\widehat{Q}}} + p^{-2} {\left\| {\partial _x^2 \partial _y^2 u - {\mathcal {P}}_p^z\partial _x^2 \partial _y^2 u} \right\| }_{0,{\widehat{Q}}}\\&\lesssim p^{-s} \left( {\left\| {\partial _x^2\partial _y^{s}} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2\partial _y\partial _z^{s}} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2\partial _y^2 \partial _z^{s-2}} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned} \end{aligned}$$

Collecting the above estimates gives

$$\begin{aligned} \begin{aligned}&{\left\| {\partial _x\partial _yu - {\mathcal {P}}_p\partial _x\partial _yu} \right\| }_{0,{\widehat{Q}}}\\&\quad \lesssim p^{-s} \left( {\left\| {\partial _x^{s+1}\partial _yu} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y^{s+1} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x\partial _y\partial _z^{s} u} \right\| }_{0,{\widehat{Q}}} {\left\| {\partial _x\partial _y^2 \partial _z^{s-1} u} \right\| }_{0,{\widehat{Q}}} \right. \\&\quad \left. + {\left\| {\partial _x^2 \partial _y^{s} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y\partial _z^{s-1} u} \right\| }_{0,{\widehat{Q}}} + {\left\| {\partial _x^2 \partial _y^2 \partial _z^{s-2} u} \right\| }_{0,{\widehat{Q}}} \right) . \end{aligned} \end{aligned}$$
(70)

Bound (21) follows combining the estimates on the second derivative term (69), the mixed derivative term (70), and the corresponding estimates for similar derivative terms.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Mascotto, L. \(hp\)-Optimal Interior Penalty Discontinuous Galerkin Methods for the Biharmonic Problem. J Sci Comput 96, 30 (2023). https://doi.org/10.1007/s10915-023-02253-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02253-y

Keywords

Mathematics Subject Classification

Navigation