Skip to main content
Log in

Phase Error Analysis of Implicit Runge–Kutta Methods: New Classes of Minimal Dissipation Low Dispersion High Order Schemes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the current research, we analyze dissipation and dispersion characteristics of the most accurate two and three-stage Gauss–Legendre implicit Runge–Kutta (R-K) methods. These methods, known for their A-stability and high stage order, are observed to carry minimum dissipation error along with the highest possible dispersive order in their respective classes. Investigation reveals that these schemes are inherently optimized to carry low phase error only at small wavenumber. It is noticed that a unique scheme, although usually sought, might not be best across diverse temporal step sizes. As larger temporal step size is imperative in conjunction with implicit R-K methods for physical problems, we thoroughly investigate to derive a class of minimum dissipation and optimally low dispersion implicit R-K schemes. Schemes are obtained by cutting down amplification error and maximum reduction of weighted phase error, suggest better accuracy for relatively bigger and varied CFL numbers. A potentially generalizable algorithm is used to design stable implicit R-K methods. As the work focuses on two and three-stage schemes, a comprehensive comparison using numerical test cases document only modest gain in accuracy or efficiency over Gauss methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data sets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Butcher, J.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  2. Alexander, R.: Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14, 1006–1021 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tam, C.K.W., Webb, J.C.: Dispersion-Relation-Preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. An, Y.: Finite-difference methods for second-order wave equations with reduced dispersion errors, Ph.D. Thesis, University of Washington (2015)

  5. Simos, T.E.: Runge–Kutta interpolants with minimal phase-lag. Comput. Math. Appl. 8, 43–49 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, F.Q., Hussaini, M.Y., Manthey, J.L.: Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics. J. Comput. Phys. 124, 177–191 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvo, M., Franco, J.M., Rández, L.: Minimum storage Runge–Kutta schemes for computational acoustics. Comput. Math. Appl. 45, 535–545 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogey, C., Bailly, C.: A family of low dispersive and low dissipative explicit schemes for flow and noise computations. J. Comput. Phys. 194, 194–214 (2004)

    Article  MATH  Google Scholar 

  9. Berland, J., Bogey, C., Bailly, C.: Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm. Comput. Fluids 35, 1459–1463 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Anastassi, Z.A., Simos, T.E.: An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175, 1–9 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tselios, K., Simos, T.E.: Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175, 173–181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Franco, J.M., Gómez, I., Rández, L.: SDIRK methods for stiff ODEs with oscillating solutions. J. Comput. Appl. Math. 81, 197–209 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Najafi-Yazdi, A., Mongeau, L.: A low-dispersion and low-dissipation implicit Runge–Kutta scheme. J. Comput. Phys. 233, 315–323 (2013)

    Article  MathSciNet  Google Scholar 

  14. Nazari, F., Mohammadian, A., Charron, M., Zadra, A.: Optimal high-order diagonally-implicit Runge–Kutta schemes for nonlinear diffusive systems on atmospheric boundary layer. J. Comput. Phys. 271, 118–130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nazari, F., Mohammadian, A., Charron, M.: High-order low-dissipation low-dispersion diagonally implicit Runge–Kutta schemes. J. Comput. Phys. 286, 38–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Giri, S., Sen, S.: A new class of diagonally implicit Runge–Kutta methods with zero dissipation and minimized dispersion error. J. Comput. Appl. Math. 376, 112841 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58, 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pazner, W., Persson, P.-O.: Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700–717 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhaumik, S., Sengupta, S., Sengupta, A.: Wave properties of fourth-order fully implicit Runge–Kutta time integration schemes. Comput. Fluids 81, 110–121 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Trefethen, L.N.: Group velocity in finite difference schemes. SIAM Rev. 24, 113–136 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  21. Trefethen, L.N.: Finite difference and spectral methods for ordinary and partial differential equations, unpublished text (1996). http://people.maths.ox.ac.uk/trefethen/pdetext.html

  22. Haras, Z., Ta’asan, S.: Finite difference scheme for long-time integration. J. Comput. Phys. 114, 265–279 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  24. dit Sandretto, J.A., Chapoutot, A.: Validated explicit and implicit Runge–Kutta methods. Reliab. Comput. 22 (2016)

  25. Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211–1218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rajpoot, M.K., Sengupta, T.K., Dutt, P.K.: Optimal time advancing dispersion relation preserving schemes. J. Comput. Phys. 229, 3623–3651 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rang, J.: Design of DIRK Schemes for Solving the Navier–Stokes-Equations, Informatik-Bericht 2007–02. TU Braunschweig, Braunschweig (2007)

    Google Scholar 

  29. Peles, O., Turkel, E.: Adaptive time steps for compressible flows based on dual-time stepping and a RK/implicit smoother. J. Sci. Comput. 81, 1409–1428 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lis: Library of Iterative Solvers for Linear Systems (2017). https://www.ssisc.org/lis/

  31. Franco, J.M., Gómez, I.: Fourth-order symmetric DIRK methods for periodic stiff problems. Numer. Algorithms 32, 317–336 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Van Der Houwen, P.J., Sommeijer, B.P.: Explicit Runge–Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions. SIAM J. Numer. Anal. 24, 595–617 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ixaru, L.G., Vanden Berghe, G.: Exponential Fitting. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  34. Jameson, L.: High order schemes for resolving waves: number of points per wavelength. J. Sci. Comput. 15, 417–439 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lyon, M., Bruno, O.P.: High-order unconditionally stable FC-AD solvers for general smooth domains II. Elliptic, parabolic and hyperbolic PDEs; theoretical considerations. J. Comput. Phys. 229, 3358–3381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers for their fruitful suggestions. These suggestions have enhanced the quality of the manuscript. The authors are thankful to Dr. Anjan K. Chakrabarty, Department of Mathematics, Indian Institute of Technology Guwahati, India for some intense discussions. Authors acknowledge the use of facilities at the High-Performance Computing Centre, Tezpur University sponsored by DeitY, India in collaboration with C-DAC, India. The first author is supported by University Grant Commission, India under Rajiv Gandhi National Fellowship (F1\(-\)17.1/2015-16/RGNF-2015-17-SC-WES-12451). The second author is thankful to Science & Engineering Research Board, India for assistance under Mathematical Research Impact Centric Support (File Number: MTR/2017/000038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuvam Sen.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, S., Sen, S. Phase Error Analysis of Implicit Runge–Kutta Methods: New Classes of Minimal Dissipation Low Dispersion High Order Schemes. J Sci Comput 96, 9 (2023). https://doi.org/10.1007/s10915-023-02220-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02220-7

Keywords

Mathematics Subject Classification

Navigation