Skip to main content
Log in

Discrete-Velocity-Direction Models of BGK-type with Minimum Entropy: I. Basic Idea

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this series of works, we develop a discrete-velocity-direction model (DVDM) with collisions of BGK-type for simulating rarefied flows. Unlike the conventional kinetic models (both BGK and discrete-velocity models), the new model restricts the transport to finite fixed directions but leaves the transport speed to be a 1-D continuous variable. Analogous to the BGK equation, the discrete equilibriums of the model are determined by minimizing a discrete entropy. In this first paper, we introduce the DVDM and investigate its basic properties, including the existence of the discrete equilibriums and the H-theorem. We also show that the discrete equilibriums can be efficiently obtained by solving a convex optimization problem. The proposed model provides a new way in choosing discrete velocities for the computational practice of the conventional discrete-velocity methodology. It also facilitates a convenient multidimensional extension of the extended quadrature method of moments. We validate the model with numerical experiments for two benchmark problems at moderate computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data in this article are available from the corresponding author upon reasonable request.

References

  1. Ansumali, S., Karlin, I.V., Öttinger, H.C.: Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63, 798–804 (2003). https://doi.org/10.1209/epl/i2003-00496-6

    Article  Google Scholar 

  2. Bellomo, N., Gatignol, R.: From the Boltzmann equation to discretized kinetic models. In: Lecture Notes on the Discretization of the Boltzmann Equation. pp. 1–16. World Scientific (2003). https://doi.org/10.1142/9789812796905_0001

  3. Bellomo, N., Burini, D., Dosi, G., Gibelli, L., Knopoff, D., Outada, N., Terna, P., Virgillito, M.-E.: What is life? A perspective of the mathematical kinetic theory of active particles. Math. Mod. Meth. Appl. Sci. 31, 1821–1866 (2021). https://doi.org/10.1142/S0218202521500408

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhatnagar, P., Gross, E., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954). https://doi.org/10.1103/PhysRev.94.511

    Article  MATH  Google Scholar 

  5. Broyden, C.: The convergence of a class of double-rank minimization algorithms. IMA J. Appl. Math. 6, 76–90 (1970). https://doi.org/10.1093/imamat/6.1.76

    Article  MATH  Google Scholar 

  6. Cai, Z., Fan, Y., Li, R.: A framework on moment model reduction for kinetic equation. SIAM J. Appl. Math. 75, 2001–2023 (2015). https://doi.org/10.1137/14100110X

    Article  MathSciNet  MATH  Google Scholar 

  7. Chalons, C., Fox, R. O., Massot, M.: A multi-Gaussian quadrature method of moments for gas-particle flows in a LES framework. In: Proceedings of the Summer Program 2010, Center for Turbulence Research, pp. 347–358. Stanford University, Stanford (2010)

  8. Chalons, C., Fox, R., Laurent, F., Massot, M., Vié, A.: Multivariate Gaussian extended quadrature method of moments for turbulent disperse multiphase flow. Multiscale Model. Simul. 15, 1553–1583 (2017). https://doi.org/10.1137/16M109209X

    Article  MathSciNet  MATH  Google Scholar 

  9. Chu, C.-K.: Kinetic-theoretic description of the formation of a shock wave. Phys. Fluids 8, 12–22 (1965). https://doi.org/10.1063/1.1761077

    Article  Google Scholar 

  10. Deshpande, S.: A second order accurate kinetic theory based method for inviscid compressible flows. NASA STI/Recon Tech. Rep. N. 87, (1986)

  11. Desjardins, O., Fox, R.O., Villedieu, P.: A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys. 227, 2514–2539 (2008). https://doi.org/10.1016/j.jcp.2007.10.026

    Article  MathSciNet  MATH  Google Scholar 

  12. Dimarco, G., Li, Q., Pareschi, L., Yan, B.: Numerical methods for plasma physics in collisional regimes. J. Plasma Phys. 81, 305810106 (2015). https://doi.org/10.1017/S0022377814000762

    Article  Google Scholar 

  13. Fox, R.: A quadrature-based third-order moment method for dilute gas-particle flows. J. Comput. Phys. 227, 6313–6350 (2008). https://doi.org/10.1016/j.jcp.2008.03.014

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedlander, S.: Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd edn. Oxford University Press, New York (2000)

    Google Scholar 

  15. Gatignol, R.: Théorie Cinétique de Gaz à Répartition Discrète de Vitesses. Springer-Verlag, (1975)

  16. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  17. Guo, Z., Xu, K., Wang, R.: Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case. Phys. Rev. E 88, 033305 (2013). https://doi.org/10.1103/PhysRevE.88.033305

    Article  Google Scholar 

  18. Harris, S.: An Introduction to the Theory of the Boltzmann Equation. Dover Publications (2004)

  19. Holway, L.: New statistical models for kinetic theory: methods of construction. Phys. Fluids 9, 1658–1673 (1966). https://doi.org/10.1063/1.1761920

    Article  Google Scholar 

  20. Huang, Q., Li, S.Q., Yong, W.-A.: Stability analysis of quadrature-based moment methods for kinetic equations. SIAM J. Appl. Math. 80, 206–231 (2020). https://doi.org/10.1137/18M1231845

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Q., Ma, P., Gao, Q., Li, S.Q.: Ultrafine particle formation in pulverized coal, biomass, and waste combustion: Understanding the relationship with flame synthesis process. Energy Fuels 34, 1386–1395 (2020). https://doi.org/10.1021/acs.energyfuels.9b03271

    Article  Google Scholar 

  22. Koller, W.: Semi-continuous extended kinetic theory, In: Lecture Notes on the Discretization of the Boltzmann Equation, pp. 97–132. World Scientific, (2003). https://doi.org/10.1142/9789812796905_0005

  23. Laurent, F., Vié, A., Chalons, C., Fox, R.O., Massot, M.: A hierarchy of Eulerian models for trajectory crossing in particle-laden turbulent flows over a wide range of Stokes numbers. In: Annual Research Briefs of the Center for Turbulence Research, pp. 193–204. Stanford University, Stanford, CA, (2012)

  24. Levermore, C.: Moment closure hierarchies for kinetic theories. J. Statist. Phys. 83, 1021–1065 (1996). https://doi.org/10.1007/BF02179552

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Marchisio, D.: Implementation of CHyQMOM in OpenFOAM for the simulation of non-equilibrium gas-particle flows under one-way and two-way coupling. Power Technol. 396, 765–784 (2022). https://doi.org/10.1016/j.powtec.2021.11.004

    Article  Google Scholar 

  26. Marchisio, D., Fox, R.: Computational Models for Polydisperse Particulate and Multiphase Systems. Cambridge University Press (2013). https://doi.org/10.1017/CBO9781139016599

  27. Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Mod. Meth. Appl. Sci. 10, 1121–1149 (2000). https://doi.org/10.1142/S0218202500000562

    Article  MathSciNet  MATH  Google Scholar 

  28. Mieussens, L.: Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries. J. Comput. Phys. 162, 429–466 (2000). https://doi.org/10.1006/jcph.2000.6548

    Article  MathSciNet  MATH  Google Scholar 

  29. Mieussens, L.: Convergence of a discrete-velocity model for the Boltzmann-BGK equation. Comput. Math. Appl. 41, 83–96 (2001). https://doi.org/10.1016/S0898-1221(01)85008-2

    Article  MathSciNet  MATH  Google Scholar 

  30. Naris, S., Valougeorgis, D.: The driven cavity flow over the whole range of the Knudsen number. Phys. Fluids 17, 097106 (2005). https://doi.org/10.1063/1.2047549

    Article  MATH  Google Scholar 

  31. Preziosi, L., Rondoni, L.: Discretization of the Boltzmann Equation and the Semicontinuous Model. Lecture Notes on the Discretization of the Boltzmann Equation, pp. 59–95. World Scientific, UK (2003). https://doi.org/10.1142/9789812796905_0004

    Book  MATH  Google Scholar 

  32. Shakhov, E.M.: Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3, 95–96 (1968)

    Article  MathSciNet  Google Scholar 

  33. Sharipov, F.: Rarefied Gas Dynamics: Fundamentals for Research and Practice. Wiley-VCH (2015)

    Google Scholar 

  34. Thüroff, F., Weber, C., Frey, E.: Numerical treatment of the Boltzmann equation for self-propelled particle systems. Phys. Rev. X 4, 041030 (2014). https://doi.org/10.1103/PhysRevX.4.041030

    Article  Google Scholar 

  35. Yong, W.-A.: Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Diff. Equ. 155, 89–132 (1999). https://doi.org/10.1006/jdeq.1998.3584

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, C., Laurent, F., Fox, R.O.: An extended quadrature method of moments for population balance equations. J. Aerosol Sci. 51, 1–23 (2012). https://doi.org/10.1016/j.jaerosci.2012.04.003

    Article  Google Scholar 

  37. Zhang, Z., Xu, J., Qi, Z., Xi, G.: A discrete velocity direction model for the Boltzmann equation and applications to micro gas flows. J. Comput. Phys. 227, 5256–5271 (2008). https://doi.org/10.1016/j.jcp.2008.01.030

    Article  MATH  Google Scholar 

  38. Zhang, Z., Peng, C., Xu, J.: H theorem and sufficient conditions for the discrete velocity direction model. Mod. Phys. Lett. B 27, 1350007 (2013). https://doi.org/10.1142/S0217984913500073

    Article  MathSciNet  Google Scholar 

  39. Zhang, Z., Zhao, W., Zhao, Q., Lu, G., Xu, J.: Inlet and outlet boundary conditions for the discrete velocity direction model. Mod. Phys. Lett. B 32, 1850048 (2018). https://doi.org/10.1142/S0217984918500483

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant no. 2021YFA0719201) and National Natural Science Foundation of China (Grant no. 51906122 and 12071246). The authors acknowledge Mr. Jialiang Zhou, Mr. Qiqi Rao and Prof. Shuiqing Li at Tsinghua University for valuable discussions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-An Yong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Realizabily of the DVDM

Realizabily of the DVDM

In this appendix, we show that for the two-dimensional DVDM, more macroscopic states can be realized with more discrete-velocity directions. In this case, the discrete-velocity directions can be expressed as \(\varvec{l}_m = (\cos \gamma _m, \sin \gamma _m)^T\) with \(\gamma _m \in [0,\pi )\) and therefore can be understood as the complex numbers \(e^{i \gamma _m}\). Without loss of generality, we assume \(0 \le \gamma _1< \dots< \gamma _N < \pi \). The main result here is the following lemma.

Lemma 4

For any N-tuple \((a_m)_{m=1}^N \in {\mathbb {R}}\) such that

$$\begin{aligned} \sum _{m=1}^N a_m e^{i \gamma _m} = 1, \end{aligned}$$

we have

$$\begin{aligned} \sum _{m=1}^N |a_m| \ge \frac{\sin \gamma _1 + \sin \gamma _N}{\sin (\gamma _N - \gamma _1)}. \end{aligned}$$
(43)

The minimum is attained when

$$\begin{aligned} a_1=\frac{\sin \gamma _N}{\sin (\gamma _N - \gamma _1)}, \ a_N=\frac{-\sin \gamma _1}{\sin (\gamma _N - \gamma _1)}, \text { and } a_2=\dots =a_{N-1}=0. \end{aligned}$$

Proof

Set \(z_m = a_m e^{i \gamma _m}\). According to the assumption, we have \(\sum _m z_m = 1\) and

$$\begin{aligned} \sum _m |a_m| = \sum _m |z_m| \ge \left|\sum _m z_m \right|= 1. \end{aligned}$$

Therefore the lemma obviously holds with \(\gamma _1=0\).

For \(\gamma _1>0\), since \(\gamma _1 \le \gamma _m<\pi \) for all m, \(z_m\) is not a real number unless \(z_m=0\). Thus, from \(\sum _m z_m=1\) it follows that there must be some \(z_m\) with positive imaginary part (denote their sum by \(z^+\)) and some \(z_m\) with negative imaginary part (denote their sum by \(z^-\)). Obviously, we have \(\gamma _+:= \arg z^+ \in (0,\pi )\) and \(\gamma _-:= \arg z^- \in (-\pi ,0)\). Note that \(z^+ + z^- = 1\), meaning that the three complex numbers \(z^+\), \(z^-\) and 1 constitute a triangle (after a proper shift of \(z^-\)) in the complex plane. Then the angle \((\gamma _+ - \gamma _-)\) from \(z^-\) to \(z^+\) is in \((0, \pi )\). We thus see from the law of sines:

$$\begin{aligned} \frac{1}{\sin (\gamma _+ - \gamma _-)} = \frac{|z^+|}{\sin (- \gamma _-)} = \frac{|z^-|}{\sin \gamma _+} \end{aligned}$$

that

$$\begin{aligned} \sum _m |a_m| = \sum _m |z_m| \ge |z^+| + |z^-| = \frac{\sin \gamma _+ - \sin \gamma _-}{\sin (\gamma _+ - \gamma _-)} =: S(\gamma _+, \gamma _-), \end{aligned}$$

which is monotonically increasing with \(\gamma _+\) and decreasing with \(\gamma _-\). This can be seen by computing the derivatives:

$$\begin{aligned} \begin{aligned} \frac{\partial S}{\partial \gamma _+}&= \frac{\cos \gamma _+ \sin (\gamma _+ - \gamma _-) - (\sin \gamma _+ - \sin \gamma _-) \cos (\gamma _+ - \gamma _-)}{\sin ^2(\gamma _+ - \gamma _-)} \\ {}&= \frac{\sin \gamma _- (\cos (\gamma _+ - \gamma _-) - 1)}{\sin ^2(\gamma _+ - \gamma _-)} \ge 0, \end{aligned} \end{aligned}$$

and similarly \(\frac{\partial S}{\partial \gamma _-} \le 0\). Geometrically we can easily see that \(\gamma _+ \ge \gamma _1\) and \(\gamma _- \le \gamma _N - \pi \). Thus, the minimum of \(|z^+| + |z^-|\) is attained when \(\gamma _+ = \gamma _1\) and \(\gamma _- = \gamma _N - \pi \). This corresponds to \(a_2=\dots =a_{N-1}=0\) and leads exactly to the RHS of Eq. (43). \(\square \)

With this lemma, we can explicitly write down the constraint on temperature \(\theta \). To do this, we denote by \(\gamma _{\varvec{U}} \in (-\pi ,\pi ]\) the argument of the flow velocity \(\varvec{U}\) in Eq. (17). Then the second equality in Eq. (17) can be rewritten as

$$\begin{aligned} \sum _{m=1}^N {\hat{\rho _m}} {{\hat{u}}}_m e^{i \gamma _m} = \rho U e^{i \gamma _{\varvec{U}}} \end{aligned}$$

or

$$\begin{aligned} \sum _{m=1}^N s{\hat{\rho _m}} {{\hat{u}}}_m e^{i (\gamma _m - \eta )} = \rho U, \end{aligned}$$
(44)

where

$$\begin{aligned} s = \left\{ \begin{aligned} 1, \quad&\text {if } 0< \gamma _{\varvec{U}} \le \pi , \\ -1, \quad&\text {if } -\pi < \gamma _{\varvec{U}} \le 0, \end{aligned} \right. \end{aligned}$$

and \(\eta = \gamma _{\varvec{U}} - \frac{s-1}{2}\pi \in (0,\pi ]\).

Let k (\(1\le k \le N\)) be such that

$$\begin{aligned} \gamma _k < \eta \le \gamma _{k+1}. \end{aligned}$$

For convenience, we define \(\gamma _{N+1}=\pi + \gamma _1\). Then we set

$$\begin{aligned} {{\tilde{\gamma }}}_m = \left\{ \begin{aligned}&\gamma _m + \pi - \eta ,&1\le m\le k, \\ {}&\gamma _m - \eta ,&k+1\le m \le N. \end{aligned} \right. \end{aligned}$$

It is clear that \(0\le {{\tilde{\gamma }}}_{k+1}<\cdots< {{\tilde{\gamma }}}_N< {{\tilde{\gamma }}}_1< \cdots< {{\tilde{\gamma }}}_k < \pi \). Now we apply the lemma above to Eq. (44) to get

$$\begin{aligned} U^2 \left( \frac{\sin {{\tilde{\gamma }}}_{k+1} + \sin \tilde{\gamma }_k}{\sin ({{\tilde{\gamma }}}_k - {{\tilde{\gamma }}}_{k+1})} \right) ^2 \le \frac{1}{\rho ^2}\left( \sum _{m=1}^N |{\hat{\rho _m}} {{\hat{u}}}_m| \right) ^2 < 2 E, \end{aligned}$$

where the last inequality is Eq. (18). The left-hand side is

$$\begin{aligned} U^2\left( \frac{\sin (\gamma _{k+1}-\eta ) + \sin (\eta - \gamma _k)}{\sin (\gamma _{k+1} - \gamma _k)} \right) ^2, \end{aligned}$$

which obviously goes to \(U^2\) as \(\gamma _{k+1}-\gamma _k \rightarrow 0\). Moreover, the constraint for \(\theta = (2E - U^2)/2\) becomes

$$\begin{aligned} \theta > U^2 \frac{\sin (\gamma _{k+1}-\eta ) \sin (\eta - \gamma _k)}{1+ \cos (\gamma _{k+1} - \gamma _k)}. \end{aligned}$$
(45)

This lower bound approaches 0 when \(\gamma _{k+1} - \gamma _k \rightarrow 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Chen, Y. & Yong, WA. Discrete-Velocity-Direction Models of BGK-type with Minimum Entropy: I. Basic Idea. J Sci Comput 95, 80 (2023). https://doi.org/10.1007/s10915-023-02211-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02211-8

Keywords

Mathematics Subject Classification

Navigation