Skip to main content
Log in

An Efficient Spectral-Galerkin Method for Elliptic Equations in 2D Complex Geometries

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A polar coordinate transformation is considered, which transforms the complex geometries into a unit disc. Some basic properties of the polar coordinate transformation are given. As applications, we consider the elliptic equation in two-dimensional complex geometries. The existence and uniqueness of the weak solution are proved, the Fourier–Legendre spectral-Galerkin scheme is constructed and the optimal convergence of numerical solutions under \(H^1\)-norm is analyzed. The proposed method is very effective and easy to implement for problems in 2D complex geometries. Numerical results are presented to demonstrate the high accuracy of our spectral-Galerkin method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability

No data is used and generated in this manuscript.

References

  1. An, J., Li, H.Y., Zhang, Z.M.: Spectral-Galerkin approximation and optimal error estimate for biharmonic eigenvalue problems in circular/spherical/elliptical domains. Numer. Algorithms 84, 427–455 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Springer, Berlin (2001)

    MATH  Google Scholar 

  3. Buzbee, B.L., Dorr, F.W., George, J.A., Golub, G.H.: The direct solution of the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8, 722–736 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  6. Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  8. Gu, Y.Q., Shen, J.: Accurate and efficient spectral methods for elliptic PDEs in complex domains. J. Sci. Comput. 83, 42, 20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gu, Y.Q., Shen, J.: An efficient spectral method for elliptic PDEs in complex domains with circular embedding. SIAM J. Sci. Comput. 43, A309–A329 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, B.Y.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  11. Heinrichs, W.: Spectral collocation schemes on the unit disc. J. Comput. Phys. 199, 66–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karniadakis, G., Sherwin, S.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  13. Korczak, K.Z., Patera, A.T.: An isoparametric spectral element method for solution of the Navier–Stokes equations in complex geometry. J. Comput. Phys. 62, 361–382 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lui, S.H.: Spectral domain embedding for elliptic PDEs in complex domains. J. Comput. Appl. Math. 225, 541–557 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37, 70–92 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    Book  MATH  Google Scholar 

  17. Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  18. Shen, J.: Efficient spectral-Galerkin method. I. Direct solvers of second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  20. Shen, J., Wang, L.L., Li, H.Y.: A triangular spectral element method using fully tensorial rational basis functions. SIAM J. Numer. Anal. 47, 1619–1650 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Song, F.Y., Xu, C.J., Karniadakis, G.E.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Toselli, A., Widlund, O.: Domain Decomposition Methods-Algorithms and Theory. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  23. Yi, L.J., Guo, B.Q.: An h-p version of the continuous Petrov–Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels. SIAM J. Numer. Anal. 53, 2677–2704 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of these authors is supported by the National Natural Science Foundation of China (No. 12071294) and Natural Science Foundation of Shanghai (No. 22ZR1443800).

Author information

Authors and Affiliations

Authors

Contributions

Z. Wang, X. Wen and G. Yao all contributed to the conceptualization, methodology, writing and the numerical simulations.

Corresponding author

Correspondence to Zhongqing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of these authors is supported by the National Natural Science Foundation of China (No. 12071294) and Natural Science Foundation of Shanghai (No. 22ZR1443800).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wen, X. & Yao, G. An Efficient Spectral-Galerkin Method for Elliptic Equations in 2D Complex Geometries. J Sci Comput 95, 89 (2023). https://doi.org/10.1007/s10915-023-02207-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02207-4

Keywords

Mathematics Subject Classification

Navigation