Skip to main content
Log in

Discrete Galerkin and Iterated Discrete Galerkin Methods for Derivative-Dependent Fredholm–Hammerstein Integral Equations with Green’s Kernel

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, we look at a class of two-point nonlinear boundary value problems and transform this into derivative-dependent Fredholm–Hammerstein integral equations, i.e., the integral equation, where the kernel is of Green’s type, and the nonlinear function inside the integral is dependent on the derivative. We obtain the error analysis by replacing all the integrals in the Galerkin method with numerical quadrature. We propose the discrete Galerkin and iterated discrete Galerkin methods by piecewise polynomials to obtain the convergence analysis of these derivative-dependent Fredholm–Hammerstein integral equations. By choosing the numerical quadrature rule appropriately, the convergence rates in Galerkin and iterated Galerkin methods are preserved. We show that the iterated discrete Galerkin method improves over the discrete Galerkin method in terms of the order of convergence. To demonstrate the theoretical results, several numerical examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data has been used for this article.

References

  1. Adomian, G.: Solution of the Thomas–Fermi equation. Appl. Math. Lett. 11(3), 131–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahues, M., Largillier, A., Limaye, B.: Spectral Computations for Bounded Operators. CRC Press, Boca Raton (2001)

    Book  MATH  Google Scholar 

  3. Atkinson, K.: The Numerical Solution of Integral Equations of the Second Kind, vol. 4. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  4. Atkinson, K., Potra, F.: The discrete Galerkin method for nonlinear integral equations. J. Integral Equ. Appl. 1(1), 17–54 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atkinson, K.E., Potra, F.A.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24(6), 1352–1373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atkinson, K.E., Potra, F.A.: On the discrete Galerkin method for Fredholm integral equations of the second kind. IMA J. Numer. Anal. 9(3), 385–403 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben-Yu, G.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  8. Cen, Z.: Numerical study for a class of singular two-point boundary value problems using Green’s functions. Appl. Math. Comput. 183(1), 10–16 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Danish, M., Kumar, S., Kumar, S.: A note on the solution of singular boundary value problems arising in engineering and applied sciences: use of oham. Comput. Chem. Eng. 36, 57–67 (2012)

    Article  Google Scholar 

  10. Das, P., Nelakanti, G., Long, G.: Discrete Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Comput. Appl. Math. 278, 293–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, P., Sahani, M.M., Nelakanti, G., Long, G.: Legendre spectral projection methods for Fredholm–Hammerstein integral equations. J. Sci. Comput. 68(1), 213–230 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gray, B.: The distribution of heat sources in the human head theoretical considerations. J. Theor. Biol. 82(3), 473–476 (1980)

    Article  Google Scholar 

  13. Inç, M., Evans, D.J.: The decomposition method for solving of a class of singular two-point boundary value problems. Int. J. Comput. Math. 80(7), 869–882 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kaneko, H., Noren, R.D., Xu, Y.: Numerical solutions for weakly singular Hammerstein equations and their superconvergence. J. Integral Equ. Appl. 4, 391–407 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaneko, H., Padilla, P., Xu, Y.: Superconvergence of the iterated degenerate kernel method. Appl. Anal. 80, 331–351 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaneko, H., Xu, Y.: Superconvergence of the iterated Galerkin methods for Hammerstein equations. SIAM J. Numer. Anal. 33, 1048–1064 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Khuri, S.A., Sayfy, A.: A novel approach for the solution of a class of singular boundary value problems arising in physiology. Math. Comput. Model. 52(3–4), 626–636 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar, M., Singh, N.: Modified adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems. Comput. Chem. Eng. 34(11), 1750–1760 (2010)

    Article  Google Scholar 

  19. Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations. Math. Comput. 48(178), 585–593 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mandal, M., Kant, K., Nelakanti, G.: Convergence analysis for derivative dependent Fredholm–Hammerstein integral equations with Green’s kernel. J. Comput. Appl. Math. 370, 112599 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Singh, R., Kumar, J., Nelakanti, G.: Numerical solution of singular boundary value problems using Green’s function and improved decomposition method. J. Appl. Math. Comput. 43(1–2), 409–425 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83(2), 238–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Singh, R., Kumar, J., Nelakanti, G.: Approximate series solution of singular boundary value problems with derivative dependence using Green’s function technique. Comput. Appl. Math. 33(2), 451–467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations. USSR Comput. Math. Math. Phys. 7(4), 1–41 (1967)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for the helpful suggestions.

Funding

The research work of Kapil Kant was supported by the ABV-IIITM Gwalior, India, research project: 011/2023.

Author information

Authors and Affiliations

Authors

Contributions

KK: The author carried out the convergence analysis and proposed method to solve the problem. RK: The author also contributes in convergence analysis. SCh: The author has proposed the problem and provide the technical details. GN: Prof G. Nelakanti helped us to revise the manuscript.

Corresponding author

Correspondence to Kapil Kant.

Ethics declarations

Conflict of interest

The author does not have any conflicts of interests for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kant, K., Kumar, R., Chakraborty, S. et al. Discrete Galerkin and Iterated Discrete Galerkin Methods for Derivative-Dependent Fredholm–Hammerstein Integral Equations with Green’s Kernel. Mediterr. J. Math. 20, 249 (2023). https://doi.org/10.1007/s00009-023-02444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02444-9

Keywords

Mathematics Subject Classification

Navigation