Skip to main content

Advertisement

Log in

Adaptive Quadratic Finite Element Method for the Unilateral Contact Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present and analyze a posteriori error estimates in the energy norm of a quadratic finite element method for the frictionless unilateral contact problem. The reliability and the efficiency of a posteriori error estimator is discussed. The suitable decomposition of the discrete space \({\mathbf{V^h_0}}\) and a discrete space \({\mathbf{Q^h}}\), where the discrete counterpart of the contact force density is defined, play crucial role in deriving a posteriori error estimates. Numerical results are presented exhibiting the reliability and the efficiency of the proposed error estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This manuscript has no associated data.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 140, Pure and Applied Mathematics, Academic Press Inc, a subsidiary of Harcourt Brace Jovanovich. Publishers, New York-San Francisco-London (2003)

    Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, (2000)

  3. Banz, L., Schröder, A.: A posteriori error control for variational inequalities with linear constraints in an abstract framework. J. Appl. Numer. Optim. 3, 333–359 (2021)

    Google Scholar 

  4. Belgacem, F.B.: Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods. SIAM J. Num. Ana. 37(4), 1198–1216 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Belhachmi, Z., Belgacem, F.B.: Quadratic finite element approximation of the Signorini problem. Math. Comp. 72(241), 83–104 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Bostan, V., Han, W.: Recovery-based error estimation and adaptive solution of elliptic variational inequalities of the second kind. Commun. Math. Sci. 2, 1–18 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Bostan, V., Han, W., Reddy, B.: A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind. Appl. Numer. Math. 52, 13–38 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Braess, D.: A posteriori error estimators for obstacle problems-another look. Numer. Math. 101, 415–421 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comp. 65, 897–921 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods \((\)Third Edition\()\). Springer-Verlag, New York (2008)

    Google Scholar 

  11. Brezzi, F., Hager, W.W., Raviart, P.A.: Error Estimates for the Finite Element Solution of Variational Inequalities. Num. Math. 28, 431–443 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution of variational inequalities. Part I. Primal theory. Numer. Math. 28, 431–443 (1977)

    MathSciNet  MATH  Google Scholar 

  13. Bustinza, R., Sayas, F.J.: Error estimates for an LDG method applied to a Signorini type problems. J. Sci. Comput. 52, 322–339 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Bürg, M., Schröder, A.: A posteriori error control of \(hp\)-finite elements for variational inequalities of the first and second kind. Comp. Math. Appl. 70, 2783–2802 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Chen, L., Zhang, C.: A coarsening algorithm on adaptive grids by newest vertex bisection and its applications. J. Comput. Math. 28(6), 767–789 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  18. Dörlfer, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    MathSciNet  Google Scholar 

  19. Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    MATH  Google Scholar 

  20. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28, 963–971 (1974)

    MathSciNet  MATH  Google Scholar 

  21. Funken, S., Praetorius, D., Wissgott, P.: Efficient implementation of adaptive P1-FEM in Matlab. Comp. Meth. in Appl. Math. 11, 460–490 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, Berlin (2008)

    MATH  Google Scholar 

  23. Gudi, T., Porwal, K.: A posteriori error estimator for a class of discontinuous Galerkin methods for the Signorini problem. J. Comp. Appl. Math. 292, 257–278 (2016)

    MATH  Google Scholar 

  24. Hage, D., Klein, N., Suttmeier, F.T.: Adaptive finite elements for a certain class of variational inequalities of the second kind. Calcolo 48, 293–305 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2007)

    MATH  Google Scholar 

  26. Hild, P., Laborde, P.: Quadratic finite element methods for unilateral contact problems. Appl. Num. Math. 41, 401–421 (2002)

    MathSciNet  MATH  Google Scholar 

  27. Hild, P., Nicaise, S.: A posteriori error estimations of residual type for Signorini’s problem. Numer. Math. 101, 523–549 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Hild, P., Nicaise, S.: Residual a posteriori error estimators for contact problems in elasticity. ESAIM:M2AN, 41:897-923, (2007)

  29. Kesavan, S.: Topics in functional analysis and applications. John Wiley & Sons, (1989)

  30. Hüeber, S., Mair, M., Wohlmuth, B.I.: A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl. Num. Math. 54, 555–576 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Kikuchi, N., Oden, J.T.: Contact Problem in Elasticity. SIAM, Philadelphia (1988)

    MATH  Google Scholar 

  33. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  34. Krause, R., Veeser, A., Walloth, M.: An efficient and reliable residual-type a posteriori error estimator for the Signorini problem. Num. Math. 130, 151–197 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Scarpini, F., Vivaldi, M.A.: Error estimates for the approximation of some unilateral problems. Ana. Numér. 11, 197–208 (1977)

    MathSciNet  MATH  Google Scholar 

  36. Steinbach, O.: Numerical approximation methods for elliptic boundary value problems. Springer, New York (2008)

    MATH  Google Scholar 

  37. Veeser, A.: Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39, 146–167 (2001)

    MathSciNet  MATH  Google Scholar 

  38. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. In Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 50:67-83, (1994)

  39. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Chichester (1995)

    MATH  Google Scholar 

  40. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for solving the Signorini problem. IMA Journal of Numerical Analysis 31, 1754–1772 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Wang, F., Han, W., Eichholz, J., Cheng, X.: A posteriori error estimates for discontinuous Galerkin methods of obstacle problems. Nonlinear Anal. Real World Appl. 22, 664–679 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Wang, F., Han, W., Cheng, X.: Discontinuous Galerkin methods for elliptic variational inequalities. SIAM J. Numer. Anal. 48, 708–733 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Walloth, M.: A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem. Appl. Num. Math. 135, 276–296 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Weiss, A., Wohlmuth, B.: A posteriori error estimator and error control for contact problems. Math. Comp. 78, 1237–1267 (2004)

    MathSciNet  MATH  Google Scholar 

  45. Wohlmuth, B.I., Popp, A., Gee, M.W., Wall, W.A.: An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements. Computational Mechanics 49(6), 735–747 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The second author’s work is supported by CSIR Extramural Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamana Porwal.

Ethics declarations

Conflicts of interest

This manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author’s work is supported by CSIR Extramural Research Grant.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, R., Porwal, K. & Wadhawan, T. Adaptive Quadratic Finite Element Method for the Unilateral Contact Problem. J Sci Comput 96, 20 (2023). https://doi.org/10.1007/s10915-023-02206-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02206-5

Keywords

Navigation