Skip to main content
Log in

A Corrected L1 Method for a Time-Fractional Subdiffusion Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Piecewise linear interpolation has been widely applied to discretize the Caputo fractional derivative operator that yields the widely used L1 method. In this paper, a corrected L1 method is proposed for discretizing the Caputo fractional derivative operator, which achieves the similar level of accuracy as that of the L1 method. The corrected L1 method is applied to solve the fractional initial value and time-fractional subdiffusion problems, the convergence of the corresponding numerical schemes is rigorous proved. In order to reduce the storage and computational cost caused by the nonlocality of the Caputo fractional operator, a fast memory-saving corrected L1 method is developed. It is proved that the difference between the solution of the corrected L1 method and the fast corrected L1 method can be made arbitrarily small and is independently the sizes of the time and/or space grids.Numerical results support the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data is available. The code will be provided via sending email to the author.

References

  1. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  2. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comp. 75(254), 673–696 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gracia, J.L., O’Riordan, E., Stynes, M.: A fitted scheme for a Caputo initial-boundary value problem. J. Sci. Comput. 76(1), 583–609 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, Y., Li, Q., Li, R., Zeng, F., Guo, L.: A unified fast memory-saving time-stepping method for fractional operators and its applications. Numer. Math. Theor. Meth. Appl. 15(2), 679–714 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, Y., Zeng, F., Guo, L.: Error estimate of the fast L1 method for time-fractional subdiffusion equations. Appl. Math. Lett. 133, 108288 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21(3), 650–678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jin, B.: Fractional Differential Equations–An Approach via Fractional Derivatives, Applied Mathematical Sciences, vol. 206. Springer, Cham (2021)

    Book  Google Scholar 

  9. Jin, B., Lazarov, R., Zhou, Z.: Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview. Comput. Methods Appl. Mech. Eng. 346, 332–358 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kopteva, N.: Error analysis for time-fractional semilinear parabolic equations using upper and lower solutions. SIAM J. Numer. Anal. 58(4), 2212–2234 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kopteva, N.: Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. Math. Comp. 90(327), 19–40 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kopteva, N., Meng, X.: Error analysis for a fractional-derivative parabolic problem on quasi-graded meshes using barrier functions. SIAM J. Numer. Anal. 58(2), 1217–1238 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus, Numerical Analysis and Scientific Computing. Chapman & Hall/CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  14. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17(3), 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52(2), 123–138 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Academic Press Inc, San Diego (1999)

    MATH  Google Scholar 

  18. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19(6), 15541562 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stynes, M.: A survey of the L1 scheme in the discretisation of time-fractional problems. Preprint p. https://doi.org/10.13140/RG.2.2.27671.60322(2021)

  21. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sun, Z.Z., Gao, G.H.: Fractional Differential Equations-Finite Difference Methods. De Gruyter, Science Press, Berlin, Beijing (2020)

    Book  MATH  Google Scholar 

  23. Zhang, H., Zeng, F., Jiang, X., Karniadakis, G.E.: Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. Fract. Calc. Appl. Anal. (2022) (in press)

  24. Zhang, J.L., Fang, Z.W., Sun, H.W.: Fast second-order evaluation for variable-order Caputo fractional derivative with applications to fractional sub-diffusion equations. Numer. Math. Theory Methods Appl. 15(1), 200–226 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12171283, 12120101001), the National Key R &D Program of China (2021YFA1000202, 2021YFA1000200), Natural Science Foundation of Shandong Province (ZR2021ZD03, ZR2020QA032, ZR2019ZD42), the startup fund from Shandong University (11140082063130), and the Science Foundation Program for Distinguished Young Scholars of Shandong (Overseas) (2022HWYQ-045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanhai Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zeng, F. A Corrected L1 Method for a Time-Fractional Subdiffusion Equation. J Sci Comput 95, 85 (2023). https://doi.org/10.1007/s10915-023-02204-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02204-7

Keywords

Mathematics Subject Classification

Navigation