Skip to main content
Log in

Trivariate Spline Collocation Methods for Numerical Solution to 3D Monge-Ampère Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We use trivariate spline functions for the numerical solution of the Dirichlet problem of the 3D elliptic Monge-Ampére equation. Mainly we use the spline collocation method introduced in [SIAM J. Numerical Analysis, 2405-2434,2022] to numerically solve iterative Poisson equations and use an averaged algorithm to ensure the convergence of the iterations. We shall also establish the rate of convergence under a sufficient condition and provide some numerical evidence to show the numerical rates. Then we present many computational results to demonstrate that this approach works very well. In particular, we tested many known convex solutions as well as nonconvex solutions over convex and nonconvex domains and compared them with several existing numerical methods to show the efficiency and effectiveness of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon request.

References

  1. Angenent, S., Haker, S., Tannenbaum, A.: Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal. 35, 61–97 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awanou, Gerard: Energy Methods in 3D Spline Approximations, Dissertation, University of Georgia, Athens, GA, (2003)

  3. Awanou, Gerard: Standard finite elements for the numerical resolution of the elliptic Monge-Ampére equation: mixed methods, IMA J. Numer. Anal. 35(3) (2013)

  4. Awanou, Gerard: Pseudo time continuation and time marching methods for Monge-Ampére type equations, Adv. Comput. Math. 41(4) (2013)

  5. Awanou, Gerard: Standard finite elements for the numerical resolution of the elliptic Monge-Ampére equation: classical solutions, IMA J. Numer. Anal. (2014)

  6. Awanou, Gerard: Spline element method for Monge-Ampére equations. BIT Numer. Math. 55, 625–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Awanou, G.: On standard finite difference discretizations of the elliptic Monge-Ampére equation. J. Sci. Comput. 69, 892–904 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Awanou, G.; Lai, MJ.; Wenston, P.: The multivariate spline method for scattered data fitting and numerical solution of partial differential equations. In Wavelets and splines: Athens, 2005, Nashboro Press, Brentwood, TN, pp. 24–74, (2006)

  9. Awanou, Geard, Li, H.: Error analysis of a mixed finite element method for the Monge-Ampére equation. Int. J. Numer. Anal. Model. 11(4), 745–761 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Barles, G., Souganidis, P.E: Convergence of approximation schemes for fully nonlinear second order equations, Decision and Control, 1990., Proceedings of the 29th IEEE Conference on, IEEE, pp. 2347–2349 (2002)

  11. Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge- Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benamou, J.-D., Froese, B.D., Oberman, A.M.: Two Numerical Methods for the elliptic Monge-Ampére equation. Mathematical Modelling and Numerical Analysis, ESAIM (2010)

    Book  MATH  Google Scholar 

  13. Benitoa, J.J., Garcia, A., Gavete, L., Negreanu, M., Ureña, F., Vargas, A.M.: Solving Monge-Ampére equation in 2D and 3D by Generalized Finite Difference Method. Eng. Anal. Bound. Elem. 124C, 52–63 (2020)

    MATH  Google Scholar 

  14. Berry, M.V.: Oriental magic mirrors and the Laplacian image. Eur. J. Phys. 27, 109–118 (2006)

    Article  MathSciNet  Google Scholar 

  15. Bohmer, K., Schaback, R.: A meshfree method for solving the Monge-Ampére equation. Numer. Algorithm. 82, 539–551 (2019)

    Article  MATH  Google Scholar 

  16. Brix, K., Hafizogullari, Y., Platen, A.: Solving the Monge-Ampére equations for the inverse reflector problem, Math. Phys. (2015)

  17. Caboussat, A., Glowinski, R., Gourzoulidis, D.: A least-squares/relaxation method for the numerical solution of the three-dimensional elliptic Monge-Ampére equation. J. Sci. Comput. 77, 53–78 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Caffarelli, L.A.: Interior \(W^{2, p}\) estimates for solutions of the Monge-Ampŕe equation. Ann. of Math. 2(131), 135–150 (1990)

    Article  Google Scholar 

  19. Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations I. Monge-Ampére equation. Commun. Pure Appl. Math. 37, 369–402 (1984)

    Article  MATH  Google Scholar 

  20. Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations, American mathematical society colloquium publications, vol. 43. American Mathematical Society, Providence, RI (1995)

    MATH  Google Scholar 

  21. Caffarelli, L.A., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61(1), 1–17 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, S., Liu, J., Wang, X.-J.: Global regularity for the Monge-Ampére equation with natural boundary condition. Ann. Math. 194(3), 745–793 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampére equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris 336(9), 779–784 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampére equation with Dirichlet boundary conditions: a least-squares approach. C. R. Math. Acad. Sci. Paris 339(12), 887–892 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Evans, L.C.: Partial differential equations and Monge-Kantorovich mass transfer. Lect. Notes 1, 65–126 (1998)

    MATH  Google Scholar 

  26. Feng, X.: Convergence of the vanishing moment method for the Monge-Ampére equation. Trans. Am. Math. Soc. 47(2), 1226–50 (2008)

    MathSciNet  Google Scholar 

  27. Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampére equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Figalli, A.: The Monge-Ampére equation and its applications, European Mathematical Society (2017)

  29. Froese, B., Oberman, A.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampére equation in dimensions two and higher, SIAM. J. Numer. Anal. 49, 1692–1714 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Froese, B.D.: A numerical method for the elliptic Monge-Ampre equation with transport boundary condition. SIAM J. Sci. Comput. 34(3), 1432–1459 (2012)

    Article  MathSciNet  Google Scholar 

  31. Gao, F., Lai, M.-J.: A new \(H^2\) regularity condition of the solution to Dirichlet problem of the Poisson equation and its applications. Acta Math. Sinica 36, 21–39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gilbarg, D.; Trudinger, N.S.: Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften, vol. 224, 2nd edn. Springer, Heidelberg (1983)

  33. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Reprint of the 1998 Edition, Classics in Mathematics, Springer, (2001)

  34. Haber, E., Rehman, T., Tannenbaum, A.: An efficient numerical method for the solution of the \(L_2\) optimal mass transfer problem. SIAM J. Sci. Comput. 32, 197–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuo, H.J., Trudinger, N.S.: Discrete methods for fully nonlinear elliptic equations. SIAM J. Numer. Anal. 29(1), 123–135 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuo, H.J., Trudinger, N.S.: On the discrete maximum principle for parabolic difference operators. Modélisation mathématique et analyse numérique 27(6), 719–737 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Kuo, H.J., Trudinger, N.S.: Positive difference operators on general meshes. Duke Math. J. 83(2), 415–434 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuo, H.J., Trudinger, N.S.: Evolving monotone difference operators on general space-time meshes. Duke Math. J. 91(3), 587–608 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lai, M.J., Lee, J.: A multivariate spline based collocation method for numerical solution of PDEs. SIAM J. Numer. Anal. 60, 2405–2434 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lai, M.J.; Schumaker, L.L.: Spline function on triangulations, Cambridge University Press, (2007)

  41. Lai, M.-J., Wenston, P.: Bivariate splines for fluid flows. Comput. Fluids 33, 1047–1073 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lee, J.: A multivariate spline method for numerical solution of partial differential equations, Dissertation (under preparation), University of Georgia, (2023)

  43. Lei, N.; Gu, X.: FFT-OT: A Fast Algorithm for Optimal Transportation, ICCV (2021)

  44. Liu, J., Froese, B.D., Oberman, A.M., Xiao, M.: A multigrid scheme for 3D Monge-Ampére equations. Int. J. Comput. Math. 94(9), 1850–66 (2016)

    Article  MATH  Google Scholar 

  45. Liu, Z.; Xu, Q.: On Multiscale RBF Collocation Methods for Solving the Monge-Ampére Equation, Mathematical Problems in Engineering Volume, Article ID 1748037, 10 pages (2020)

  46. Mak, S.-Y., Yip, D.-Y.: Secrets of the chinese magic mirror replica. Phys. Ed. 36, 102–107 (2001)

    Article  Google Scholar 

  47. Mersmann, C.: Numerical Solution of Helmholtz equation and Maxwell equations, Ph.D. Dissertation, University of Georgia, Athens, GA (2019)

  48. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge-Ampere equation and functions of the eigenvalues of the Hessian. Discret. Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)

    MathSciNet  MATH  Google Scholar 

  49. Ostrowski, A.M.: Solution of equations and systems of equations, pure and applied mathematics, vol. IX. New York-London: Academic Press, pp. ix +202 (1960)

  50. Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation \(\dfrac{\partial ^2}{\partial x^2}u \dfrac{\partial ^2}{\partial y^2}u- \left( \dfrac{\partial ^2}{\partial x \partial y}u\right)=f\) and its discretizations. I Numer. Math. 54(3), 271–293 (1989)

    Article  MATH  Google Scholar 

  51. Schumaker, L.L.: Spline Functions: Computational Methods. SIAM Publication, Philadelphia (2015)

    Book  MATH  Google Scholar 

  52. Schumaker, L.L.: Solving elliptic PDE’s on domains with curved boundaries with an immersed penalized boundary method. J. Sci. Comput. 80(3), 1369–1394 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Villani, C.: Topics in Optimal Transportation. AMS, Providence, RI (2003)

    Book  MATH  Google Scholar 

  54. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business Media, (2008)

  55. Wang, X.-J.: Regularity for Monge-Ampére equation near the boundary. Analysis 16, 101–107 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Xu, Y.D.: Multivariate splines for scattered data fitting. eigenvalue problems, and numerical solution to poisson equations, Ph.D. Dissertation, University of Georgia, Athens, GA, (2019)

  57. Zhu, X., Ni, J., Chen, Q.: An optical design and simulation of LED low-beam headlamps. J. Phys. Conf. Ser. 276, 012201 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks anonymous referees for their valuable comments. In addition, the authors would like to thank Dr. Gerard Awanou for generosity for providing references [22] and [55].

Funding

Dr. Ming-Jun Lai is supported by the Simons Foundation collaboration grant #864439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsil Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, MJ., Lee, J. Trivariate Spline Collocation Methods for Numerical Solution to 3D Monge-Ampère Equation. J Sci Comput 95, 56 (2023). https://doi.org/10.1007/s10915-023-02183-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02183-9

Keywords

Mathematics Subject Classification

Navigation