Skip to main content
Log in

On Spectral Petrov–Galerkin Method for Solving Optimal Control Problem Governed by Fractional Diffusion Equations with Fractional Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a spectral Petrov–Galerkin method is developed to solve an optimal control problem governed by a two-sided space-fractional diffusion-reaction equation with additive fractional noise. In order to compensate weak singularities of the solution near boundaries, regularities of both the fractional noise and the optimal control problem are analyzed in weighted Sobolev space. The spectral Petrov–Galerkin method is presented by employing truncated spectral expansion of the fractional Brownian motion (fBm) type noise, and error estimates are given based on the obtained regularity of the optimal control problem. Numerical experiments are carried out to verify the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  3. Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia (1975)

    Book  MATH  Google Scholar 

  4. Antil, H., Kouri, D.P., Pfefferer, J.: Risk-averse control of fractional diffusion with uncertain exponent. SIAM J. Control. Optim. 59, 1161–1187 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1424 (2000)

    Article  Google Scholar 

  6. Approximability of function in the Weighted Besov spaces: Babuška I., Guo B., Direct and inverse approximation theorems for p-version of the finite element method in the framework of weighted Besov spaces. Part I. SIAM J. Numer. Anal. 39, 1512–1538 (2001)

  7. Cao, W., Hao, Z., Zhang, Z.: Strong convergence of finite element methods for one-dimensional stochastic ellipitc equations with fractional noise. J. Sci. Comput. 91, 1 (2022)

    Article  MATH  Google Scholar 

  8. Cao, Y., Hussaini, M.Y., Yang, H.: Numerical optimization of radiated engine noise with uncertain wavenumbers. Internat. J. Numer. Anal. Model. 4, 392–401 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Cao, Y., Hong, J., Liu, Z.: finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion. IMA J. Numer. Anal. 38, 184–197 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, P., Quarteroni, A., Rozza, G.: Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations. SIAM J. Numer. Anal. 51, 2700–2722 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Yi, N., Liu, W.: A Legendre-Galerkin Spectral Method for Optimal Control Problems Governed by Elliptic Equations. SIAM J. Numer. Anal. 46, 2254–2275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chakraborty P., Meerschaert M. M., Lim C. Y.: Parameter estimation for fractional transport: A particle-tracking approach, Water Resources Research, 45 (2009)

  13. Da Prato, G., Debussche, A.: Control of the stochastic burgers model of turbulence. SIAM J. Control. Optim. 37, 1123–1149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. del-Castillo-Negrete D.: Fractional diffusion models of nonlocal transport, Phys. Plasmas 13, 082308 (2006)

  15. Du, N., Shen, W.: A fast stochastic method for a constrined optimal control problem governed by a random fractional diffusion equation. J. Math. Comput. 36, 259–275 (2018)

    Article  MATH  Google Scholar 

  16. Dzhaparidze, K., van Zanten, H.: A series expansion of fractional Brownian motion. Probab. Theory Relat. Fields 130, 39–55 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comp. 87, 2273–2294 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ervin V. J.: Regularity of the solution to fractional diffusion, advection, reaction equations, 2020, arXiv: 1911.03261

  19. Guo, B., Wang, L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gunzburger, M., Lee, H., Lee, J.: Error estimates of stochastic optimal neumann boundary control problems. SIAM J. Numer. Anal. 49, 1532–1552 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gunzburger, M., Li, B., Wang, J.: Sharp convergence rates of time discretization for stochastic time-fractional PDES subject to additive space-time white noise. Math. Comp. 88, 1715–1741 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hou, L.S., Lee, J., Manouzi, H.: Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs. J. Math. Anal. Appl. 384, 87–103 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hao, Z., Lin, G., Zhang, Z.: Error estimates of a spectral Petrov-Galerkin method for two-sided fractional reaction-diffusion equations. Appl. Math. Comput. 374, 125045 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Hao, Z., Zhang, Z.: Fast spectral Petrov-Galerkin method for fractional elliptic equations. Appl. Numer. Math. 162, 318–330 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hao, Z., Zhang, Z.: Numerical approximation of optimal convergence for fractional elliptic equations with additive Guassian noise. SIAM/ASA J. Uncertain. Quantif. 9, 1013–1033 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, B., Yan, Y., Zhou, Z.: Numerical approximation of stochastic time-fractional diffusion. ESAIM Math. Model. Numer. Anal. 53, 1245–1268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., Chen, A.: Numerical methods for fractional partial differential euations. Int. J. Comput. Math. 95, 1048–1099 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, S., Cao, W., Wang, Y.: On spectral Petrov-Galerkin method for solving optimal control problem governed by a two-sided fractional diffusion equation. Comput. Math. Appl. 107, 104–116 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, Y., Wang, Y., Deng, W.: Galerkin finite element approximations for stochastic space-time fractional wave equations. SIAM J. Numer. Anal. 55, 3173–3202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, X., Deng, W.: Numerical approximation for fractional diffusion equation forced by a tempered fractional Gaussian noise. J. Sci. Comput. 84, 21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications. Gordon and Breach, Yverdon, Switzerland (1993)

  32. Schillings C.: Optimal Aerodynamic Design Under Uncertainties, Ph.D. thesis, Fb-IV, Mathematik, Universität Trier, Germany (2010)

  33. Schulz, V., Schillings, C.: On the nature and treatment of uncertainties in aerodynamic design. AIAA J. 47, 646–654 (2009)

    Article  Google Scholar 

  34. Sun, T., Shen, W., Gong, B., Liu, W.: A priori error estimate of stochastic Galerkin method for optimal control problem governed by stochastic elliptic PDE with constrained control. J. Sci. Comput. 67, 405–431 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tiesler, H., Kirby, R.M., Xiu, D., Preusser, T.: Stochastic collocation for optimal control problems with stochastic PDE constraints. SIAM J. Control. Optim. 50, 2659–2682 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X., Qi, R., Jiang, F.: Sharp mean-square regularity results for SPDEs with fractional noise and optimal convergence rates for the numerical approximations. BIT 57, 557–585 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, F., Zhou, Z., Zhang, Z.: A spectral Galerkin approximation of optimal control problem governed by fractional advection-diffusion-reaction equations. J. Comput. Appl. Math. 386, 113233 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng, X., Ervin, V.J., Wang, H.: Optimal Petrov–Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval. J. Sci. Comput. 86, 29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanrong Cao.

Ethics declarations

Statements and Declarations

This work was supported by the National Natural Science Foundation of China (No. 12071073). The authors have no relevant financial or non-financial interests to disclose. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Error Estimate in \(H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }\)-norm

A Error Estimate in \(H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }\)-norm

In this section we present error estimates in \(H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }\)-norm of the spectral Petrov–Galerkin approximation for two-sided fractional diffusion reaction equations. It is motivated by the observation that the convergence order of \(\Vert q-q_N\Vert \) tested in Example 5.2 is higher than the overall convergence order given by Theorem 4.4.

We consider the following two-sided fractional diffusion reaction equation, i.e. the model equation of (3.2),

$$\begin{aligned} \begin{aligned} \mathcal {L}_\theta ^\alpha p + \lambda p&= f(x),\ {}&x \in I:=(0,1), \\ p(x)&= 0,\ {}&x \in \partial I.\quad \quad \quad \ \end{aligned}\end{aligned}$$
(A.1)

The Petrov–Galerkin ultra-weak formulation is: Given \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha \), to find \(p\in L_{\omega ^{-\sigma ,-\sigma ^*}}^2(I)\) such that

$$\begin{aligned} (p,\mathcal {L}_{1-\theta }^\alpha (\omega ^{\sigma ^*,\sigma } v))+\lambda (p,v)_{\omega ^{\sigma ^*,\sigma }}=(f,v)_{\omega ^{\sigma ^*,\sigma }},\ \forall v\in H_{\omega ^{\sigma ^*,\sigma }}^{\alpha }(I). \end{aligned}$$
(A.2)

The well-posedness of the problem has been constructed as follows.

Lemma A.1

([24, Theorem 3.1]) For the problem (A.2) with \(\lambda \ge 0\), if \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{-\alpha }(I)\), then there exists an unique solution \(p\in L^2_{\omega ^{-\sigma ,-\sigma ^*}}(I)\) such that

$$\begin{aligned} \Vert p\Vert _{\omega ^{-\sigma ,-\sigma ^*}}\le C\Vert f\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{-\alpha }}. \end{aligned}$$

We recall the finite dimensional spaces \(U_N\) and \(V_N\) defined as (4.3) and (4.4), respectively. Then the spectral Petrov–Galerkin approximation is: Given \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha \), to find \(p_N \in U_N\) such that

$$\begin{aligned} (p_N,\mathcal {L}_{1-\theta }^\alpha (\omega ^{\sigma ^*,\sigma } v_N))+\lambda (p_N,v_N)_{\omega ^{\sigma ^*,\sigma }}=(f,v_N)_{\omega ^{\sigma ^*,\sigma }},\ \forall v_N\in V_N. \end{aligned}$$
(A.3)

The error estimate has been obtained in [24].

Lemma A.2

([24, Theorem 4.1]) Assume that p and \(p_N\) are solutions of the formulation (A.2) and its spectral Petrov–Galerkin discrete counterpart (A.3), respectively. If \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^r(I)\), \(r\ge -\alpha \), then there exists a positive integer \(N_0\) such that when \(N>N_0\), we have

$$\begin{aligned} \Vert p_N\Vert _{\omega ^{-\sigma ,-\sigma ^*}}\le C\Vert f\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{-\alpha }}, \end{aligned}$$
(A.4)

and

$$\begin{aligned} \Vert p-p_N\Vert _{\omega ^{-\sigma ,-\sigma ^*}}\le CN^{-m}\Vert f\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^r}, \end{aligned}$$

where \(m=\min \{r+\alpha ,2\alpha +\min (\sigma ,\sigma ^*)+1-\epsilon \},\) is the regularity index of \(\omega ^{-\sigma ,-\sigma ^*}p\) in \(H_{\omega ^{\sigma ,\sigma ^*}}^m(I)\).

To establish the error estimate in \(H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }\)-norm of the spectral Petrov–Galerkin approximation, we consider the following weak formulation established in [38] for the problem (A.1): Given \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha /2\), to find \(\phi \in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}(I)\) such that \(p(x)=\omega ^{\sigma ,\sigma ^*}(x)\phi (x)\) satisfies

$$\begin{aligned} B(\phi ,\psi ):=(\mathcal {L}_\theta ^\alpha p + \lambda p, \psi )_{\omega ^{\sigma ^*,\sigma }}=(f,\psi )_{\omega ^{\sigma ^*,\sigma }},\ \forall \psi \in H_{\omega ^{\sigma ^*,\sigma }}^{\alpha /2}(I). \end{aligned}$$
(A.5)

Correspondingly, the approximation scheme is: Given \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha /2\), to find \(\phi _N\in X_N:=\textrm{span}\{\textrm{Q}_\textrm{n}^{\sigma ,\sigma ^{*}}\}_{n=0}^N\) such that \(p_N(x)=\omega ^{\sigma ,\sigma ^*}(x)\phi _N(x)\) satisfies

$$\begin{aligned} (\mathcal {L}_\theta ^\alpha p_N + \lambda p_N, \psi _N)_{\omega ^{\sigma ^*,\sigma }}=(f,\psi _N)_{\omega ^{\sigma ^*,\sigma }},\ \forall \psi _N \in Y_N:=\textrm{span}\{\textrm{Q}_\textrm{n}^{\sigma ,\sigma ^*}\}_{n=0}^N. \end{aligned}$$
(A.6)

It is noted that if \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha /2\), the solution \(p:=\omega ^{\sigma ,\sigma ^*}(x)\phi (x)\) to the weak formulation (A.5) is also the solution to the ultra-weak formulation (A.2), and this relation still holds for their corresponding approximation scheme (A.6) and (A.3). Thus the following estimates are valid for the ultra-weak formulation (A.2) and its spectral Petrov–Galerkin scheme (A.3) with \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha /2\).

For the above approximation (A.6) we have the following convergence results.

Lemma A.3

([38, Lemma 4.2]) There exists \(C>0\) such that for \(\phi \) satisfying (A.5) and \(\phi _N\) satisfying (A.6),

$$\begin{aligned} \Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}\le C\inf \limits _{\xi _N\in X_N}\Vert \phi -\xi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}. \end{aligned}$$

Lemma A.4

([38, Corollary 4.1]) Let \(\phi \) be the solution of (A.5) and \(\phi _N\) be the solution of (A.6), respectively. If \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha /2\), then there exists \(C>0\) such that

$$\begin{aligned} \Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}\le CN^{-m+\alpha /2}\Vert f\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{r}}, \end{aligned}$$

where \(m=\min \{r+\alpha ,2\alpha +\min (\sigma ,\sigma ^*)+1-\epsilon \}\), is the regularity index of \(\phi \) in \(H_{\omega ^{\sigma ,\sigma ^*}}^m(I)\).

Let \(\pi _N^{\gamma ,\beta }: L^2_{\omega ^{\gamma ,\beta }}(I)\rightarrow P_N(I) \), \(\gamma ,\ \beta >-1\), is a \(L^2_{\omega ^{\gamma ,\beta }}(I)\)-orthogonal projection such that

$$\begin{aligned} (\pi _N^{\gamma ,\beta }u-u,v)_{\omega ^{\gamma ,\beta }}=0, \ \forall v\in P_N(I), \end{aligned}$$

which can be also expressed by

$$\begin{aligned} \pi _N^{\gamma ,\beta }u(x)=\sum \limits _{n=0}^{N}\hat{u}_nQ_n^{\gamma ,\beta },\ \hat{u}_n=\frac{(u,Q_n^{\gamma ,\beta })_{\omega ^{\gamma ,\beta }}}{\Vert Q_n^{\gamma ,\beta }\Vert ^2_{{\omega ^{\gamma ,\beta }}}}. \end{aligned}$$

And we have the following projection error estimate.

Lemma A.5

([19, Theorem 2.1]) For \( u\in H_{\omega ^{\gamma ,\beta }}^r(I)\) and for all \(0\le r_1\le r\),

$$\begin{aligned} \Vert \pi _N^{\gamma ,\beta }u-u\Vert _{H_{\omega ^{\gamma ,\beta }}^{r_1}}\le C(N(N+\gamma +\beta ))^{\frac{r_1-r}{2}}|u|_{H_{\omega ^{\gamma ,\beta }}^{r}}, \end{aligned}$$
(A.7)

where C is a generic positive constant independent of u, N, \(\gamma \) and \(\beta \).

Now, we are ready to prove the error estimate in \(H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }\)-norm of the spectral Petrov–Galerkin approximation.

Theorem A.6

Let p and \(p_N\) be determined by (A.5) and (A.6), respectively. If \(f\in H^{-\alpha /2}(I)\cap H_{\omega ^{\sigma ^*,\sigma }}^{r}(I)\), \(r\ge -\alpha /2\), then there exists a constant \(C>0\) such that

$$\begin{aligned} \Vert p-p_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}&\le C N^{-3\alpha /2}\Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}\nonumber \\&\le CN^{-(m+\alpha )}\Vert f\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{r}}, \end{aligned}$$

where \(m=\min \{r+\alpha ,2\alpha +\min (\sigma ,\sigma ^*)+1-\epsilon \}\), is the regularity index of \(\phi \) in \(H_{\omega ^{\sigma ,\sigma ^*}}^m(I)\).

Proof

The adjoint problem to (A.5) is: Given \(g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }(I)\), to find \(\psi \in H_{\omega ^{\sigma ^*,\sigma }}^{\alpha /2}(I)\) such that \(w(x)=\omega ^{\sigma ^*,\sigma }\psi (x)\) satisfies

$$\begin{aligned} (\mathcal {L}_{1-\theta }^\alpha w + \lambda w, \phi )_{\omega ^{\sigma ,\sigma ^*}}=(g,\phi )_{\omega ^{\sigma ,\sigma ^*}},\ \forall \phi \in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}(I). \end{aligned}$$
(A.8)

Correspondingly, the approximation scheme is: Given \(g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }(I)\), to find \(\psi _N\in Y_N\) such that \(w_N(x)=\omega ^{\sigma ^*,\sigma }\psi _N(x)\) satisfies

$$\begin{aligned} (\mathcal {L}_{1-\theta }^\alpha w_N + \lambda w_N, \phi _N)_{\omega ^{\sigma ,\sigma ^*}}=(g,\phi _N)_{\omega ^{\sigma ,\sigma ^*}},\ \forall \phi _N \in X_N. \end{aligned}$$
(A.9)

Note that by Lemma 3.5, for \(g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha } (I)\), \(\omega ^{\sigma ,\sigma ^*}g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }(I)\), i.e., \(\Vert \omega ^{\sigma ,\sigma ^*}g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\le c\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\). Thus we have

$$\begin{aligned} \Vert p-p_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}&=\sup \limits _{g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{|(p-p_N,g)_{\omega ^{\sigma ,\sigma ^*}}|}{\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}} =\sup \limits _{g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{|(\omega ^{\sigma ,\sigma ^*}\phi -\omega ^{\sigma ,\sigma ^*}\phi _N,g)_{\omega ^{\sigma ,\sigma ^*}}|}{\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\nonumber \\&=\sup \limits _{g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{|(\phi -\phi _N,\omega ^{\sigma ,\sigma ^*}g)_{\omega ^{\sigma ,\sigma ^*}}|}{\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\le C \sup \limits _{g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{|(\phi -\phi _N,\omega ^{\sigma ,\sigma ^*}g)_{\omega ^{\sigma ,\sigma ^*}}|}{\Vert \omega ^{\sigma ,\sigma ^*}g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\nonumber \\&\le C\Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}. \end{aligned}$$
(A.10)

Next we estimate

$$\begin{aligned} \Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}=\sup \limits _{g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{|(\phi -\phi _N,g)_{\omega ^{\sigma ,\sigma ^*}}|}{\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}. \end{aligned}$$
(A.11)

From (A.8), (A.9) and Galerkin orthogonality, we have, for \(g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }(I)\),

$$\begin{aligned} (\phi -\phi _N,g)_{\omega ^{\sigma ,\sigma ^*}}&=(\mathcal {L}_{1-\theta }^\alpha w + \lambda w, \phi )_{\omega ^{\sigma ,\sigma ^*}}-(\mathcal {L}_{1-\theta }^\alpha w_N + \lambda w_N, \phi _N)_{\omega ^{\sigma ,\sigma ^*}}\nonumber \\&=(w,\mathcal {L}_{\theta }^\alpha (\omega ^{\sigma ,\sigma ^*}\phi )+\lambda \omega ^{\sigma ,\sigma ^*}\phi )-(w_N,\mathcal {L}_{\theta }^\alpha (\omega ^{\sigma ,\sigma ^*}\phi _N)+\lambda \omega ^{\sigma ,\sigma ^*}\phi _N)\nonumber \\&=B(\phi ,\psi )-B(\phi _N,\psi _N)\nonumber \\&=B(\phi -\phi _N,\psi -\psi _N)+B(\phi _N,\psi -\psi _N)+B(\phi -\phi _N,\psi _N)\nonumber \\&=B(\phi -\phi _N,\psi -\psi _N)\nonumber . \end{aligned}$$

Thus, by the continuity [38, Lemma 3.1] of bilinear form \(B(\cdot ,\cdot )\) and Lemma A.3, we obtain

$$\begin{aligned} |(\phi -\phi _N,g)_{\omega ^{\sigma ,\sigma ^*}}|&\le C\Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}\Vert \psi -\psi _N\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{\alpha /2}}\nonumber \\&\le C\Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}\inf \limits _{\xi _N\in Y_N}\Vert \psi -\xi _N\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{\alpha /2}}. \end{aligned}$$
(A.12)

It follows from Lemma 3.4 that for \(g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }(I)\) in (A.8), we have \(\psi \in H_{\omega ^{\sigma ^*,\sigma }}^{2\alpha }(I)\), and

$$\begin{aligned} \Vert \psi \Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{2\alpha }}\le C\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}. \end{aligned}$$

Then by the estimate (A.7) of the projection error,

$$\begin{aligned} \inf \limits _{\xi _N\in Y_N}\Vert \psi -\xi _N\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{\alpha /2}}&\le C \Vert \psi -\pi _N^{\sigma ^*,\sigma }\psi \Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{\alpha /2}}\nonumber \\&\le CN^{-3\alpha /2}\Vert \psi \Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{2\alpha }}\le CN^{-3\alpha /2}\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}. \end{aligned}$$
(A.13)

With (A.10)-(A.13) and Lemma A.4, we obtain

$$\begin{aligned} \Vert p-p_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}&\le C\sup \limits _{g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{|(\phi -\phi _N,g)_{\omega ^{\sigma ,\sigma ^*}}|}{\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\\&\le C \sup \limits _{g\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{\Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}\inf \limits _{\xi _N\in Y_N}\Vert \psi -\xi _N\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{\alpha /2}}}{\Vert g\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\\&\le C N^{-3\alpha /2}\Vert \phi -\phi _N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha /2}}\\&\le CN^{-3\alpha /2} N^{-m+\alpha /2} \Vert f\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{r}}\le CN^{-(m+\alpha )}\Vert f\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{r}}.\qquad \qquad \square \end{aligned}$$

With the help of error estimate in \(H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }\)-norm, the convergence result of control \(q_N\) in Theorem 4.4 can be improved for the deterministic control problem (3.1)-(3.2) with \(f\in H_{\omega ^{\sigma ^*,\sigma }}^{r_1}(I)\), \(r_1\ge -\alpha /2\).

Theorem A.7

Assume that (uzq) is the solution of the weak formulation of optimality conditions (3.3)-(3.5), and \((u_N,z_N,q_N)\) is the solution of corresponding spectral Petrov–Galerkin scheme. If \(f\in H^{r_1}_{\omega ^{\sigma ^*,\sigma }}(I)\), \(u_d\in H^{r_2}_{\omega ^{\sigma ,\sigma ^*}}(I)\) with \(r_1, r_2\ge -\alpha /2\), then the control \(q_N\) has the following error estimate

$$\begin{aligned} \Vert q-q_N\Vert \le C N^{-(\min \{r_1+\alpha ,r_2,s\}+\alpha )}, \end{aligned}$$

where \(s=3\min \{\sigma ,\sigma ^*\}+1-\epsilon \).

Proof

Refer to the proof of Theorem 4.5 in [28] or following the proof of Theorem 4.3 for the optimal control problem with fractional noise (see (4.19)), we can derive that the error \(\Vert q-q_N\Vert \) in Theorem 4.4 is bounded by \(\Vert z-z_N(q)\Vert _{\omega ^{-\sigma ^*,-\sigma }}\), and

$$\begin{aligned} \Vert q-q_N\Vert&\le C\Vert z-z_{N}(u)\Vert _{\omega ^{-\sigma ^*,-\sigma }}+C\Vert z_{N}(u)-z_{N}(q)\Vert _{\omega ^{-\sigma ^*,-\sigma }}, \end{aligned}$$

where \(z_N(u)\) and \(z_N(q)\) are the intermediate variables defined by

$$\begin{aligned} b(z_N(q),w_N)&=(u_N(q)-u_d,w_N)_{\omega ^{\sigma ,\sigma ^*}},\ \forall w_N \in W_N, \end{aligned}$$
(A.14)
$$\begin{aligned} b(z_N(u),w_N)&=(u-u_d,w_N)_{\omega ^{\sigma ,\sigma ^*}},\ \forall w_N \in W_N. \end{aligned}$$
(A.15)

Then subtracting (A.14) from (A.15), by (4.23) and Lemma 4.4 in [18] we have

$$\begin{aligned} \Vert z_{N}(u)-z_{N}(q)\Vert _{\omega ^{-\sigma ^*,-\sigma }}&\le C \sup \limits _{0\not =w_N\in W_N}\frac{b(z_{N}(u)-z_{N}(q),w_N)}{\Vert w_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\\&\le C\sup \limits _{0\not =w_N\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{b(z_{N}(u)-z_{N}(q),w_N)}{\Vert w_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\nonumber \\&=C\sup \limits _{0\not =w_N\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{(u-u_N(q),w_N)_{\omega ^{\sigma ,\sigma ^*}}}{\Vert w_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}.\nonumber \\&\le C\sup \limits _{0\not =w_N\in H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}\frac{\Vert u-u_N(q)\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}\Vert w_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}{\Vert w_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{\alpha }}}\nonumber \\&\le C\Vert u-u_N(q)\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}. \end{aligned}$$

Thus,

$$\begin{aligned} \Vert q-q_N\Vert&\le \Vert z-z_{N}(u)\Vert _{\omega ^{-\sigma ^*,-\sigma }}+C\Vert u-u_N(q)\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}. \end{aligned}$$
(A.16)

Note that in (A.16) \(z_N(u)\) and \(u_N(q)\) are the spectral Petrov–Galerkin approximation to z and u, respectively. Then for \(f\in H^{r_1}_{\omega ^{\sigma ^*,\sigma }}(I)\), \(r_1\ge -\alpha /2\), by error estimate of spectral Petrov–Galerkin approximation in \(L^2_{\omega ^{-\sigma ^*,-\sigma }}\)-norm in Theorem A.2 and \(H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }\)-norm in Theorem A.6, we obtain

$$\begin{aligned} \Vert q-q_N\Vert&\le \Vert z-z_{N}(u)\Vert _{\omega ^{-\sigma ^*,-\sigma }}+C\Vert u-u_N(q)\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}\\&\le CN^{-(\min \{r_1+\alpha ,r_2,s\}+\alpha )}+CN^{-(\min \{r_1,r_2+\alpha ,s\}+2\alpha )}\\&\le CN^{-(\min \{r_1+\alpha ,r_2,s\}+\alpha )}. \end{aligned}$$

where \(s=3\min \{\sigma ,\sigma ^*\}+1-\epsilon \). \(\square \)

Remark A.8

By Theorem 3.7, we have \(\omega ^{-\sigma ^* , -\sigma }q \in H^{\min \{ r_1+\alpha ,\,r_2 ,\, s \}+ \alpha }_{\omega ^{\sigma ^* , \sigma }} (I)\). It indicates that the convergence order of \(q_N\) in standard \(L^2\)-norm can be raised to the same level as its regularity in weighted Sobole space.

Similarly, we also can obtain

$$\begin{aligned} \Vert u-u_N\Vert _{\omega ^{-\sigma ,-\sigma ^*}}&\le \Vert u-u_N(q)\Vert _{\omega ^{-\sigma ,-\sigma ^*}}+C\Vert q-q_N\Vert _{H_{\omega ^{\sigma ^*,\sigma }}^{-\alpha }},\\ \Vert z-z_N\Vert _{\omega ^{-\sigma ,-\sigma ^*}}&\le \Vert z-z_N(u)\Vert _{\omega ^{-\sigma ,-\sigma ^*}}+C\Vert u-u_N\Vert _{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}, \end{aligned}$$

which indicates the convergence of state u and adjoint state z are also likely to be improved. As here we could not presented the negative norm estimation for discrete control \(q_N\) and state \(u_N\) due to technical difficulties, it is tested by numerical experiments in Example 5.2.

Remark A.9

For the spectral Petrov–Galerkin approximation to the deterministic control problem (3.1)-(3.2), refer to Remark 4.3 in [37] and by using (3.6), we can prove that for \(\sigma ,\sigma ^* \in (0,1)\),

$$\begin{aligned} \Vert q-q_N\Vert _{\omega ^{-\sigma ^*,-\sigma }}\le C\Vert z-z_N\Vert _{\omega ^{-\sigma ^*,-\sigma }}. \end{aligned}$$

Then similar to (4.29) and (4.31), we have

$$\begin{aligned} \Vert z-z_N\Vert _{\omega ^{-\sigma ^*,-\sigma }}\le C\Vert q-q_N\Vert _{\omega ^{-\sigma ^*,-\sigma }}+\Vert z-z_{N}(u)\Vert _{\omega ^{-\sigma ^*,-\sigma }}+C\Vert u-u_N(q)\Vert _{\omega ^{-\sigma ,-\sigma ^*}}. \end{aligned}$$

It means that discrete control \(q_N\) and adjoint state \(z_N\) will stay same convergence order in weighted \(L^2_{\omega ^{-\sigma ^*,-\sigma }}\)-norm. It is verified in Example 5.2.

Remark A.10

For the optimal control problem with fractional noise, similar to (A.16), by (4.19), (4.20) and (4.27), we have

$$\begin{aligned} \Vert q-q_{MN}\Vert ^2&\le C\mathbb E[ \Vert z-z_{MN}(u)\Vert ^2_{\omega ^{-\sigma ^*,-\sigma }}]+C \mathbb E[ \Vert z_{MN}(u)-z_{MN}(q)\Vert ^2_{\omega ^{-\sigma ^*,-\sigma }}]\nonumber \\&\le CN^{-2m}+C \mathbb E[ \Vert u-u_{MN}(q)\Vert ^2_{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}], \end{aligned}$$

where \(m=\min \{H-1+\alpha -\epsilon ,3\min (\sigma ,\sigma ^*)+1-\epsilon ,r\}+\alpha \), and r is the regularity index of \(u_d\). Unlike deterministic case, \(u_{MN}\) is not the spectral Petrov–Galerkin approximation of u but \(u_M\), which defined by

$$\begin{aligned} a(u_M,v)=(\dot{W}^H_M+q,v)_{\omega ^{\sigma ^*,\sigma }},\ \forall v\in \mathcal { H}_{\omega ^{\sigma ^*,\sigma }}^{\alpha }(I). \end{aligned}$$

Thus,

$$\begin{aligned} \Vert q-q_{MN}\Vert ^2&\le CN^{-2m}+ 2C \mathbb E[ \Vert u-u_M\Vert ^2_{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}]+ 2C \mathbb E[ \Vert u_M-u_{MN}(q)\Vert ^2_{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}],\nonumber \\&\le CN^{-2m}+ 2C \mathbb E[ \Vert u-u_M\Vert ^2_{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}]+ CN^{-2(H-1+2\alpha -\epsilon )}, \end{aligned}$$

and similarly we have

$$\begin{aligned} \mathbb E[\Vert z-z_{MN}\Vert ^2_{\omega ^{-\sigma ^*,-\sigma }}] \le C \mathbb E[\Vert z-z_{MN}(u)\Vert ^2_{\omega ^{-\sigma ^*,-\sigma }}]+C\mathbb E[\Vert u-u_{MN}\Vert ^2_{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}], \end{aligned}$$

which indicates that a further analysis of \(\mathbb E[\Vert u-u_M\Vert ^2_{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}]\) and \(\mathbb E[\Vert u-u_{MN}\Vert ^2_{H_{\omega ^{\sigma ,\sigma ^*}}^{-\alpha }}]\) allows for an increase in the convergence orders of adjoint state \(z_{MN}\) and control \(q_{MN}\), see numerical results in Example 5.1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Cao, W. On Spectral Petrov–Galerkin Method for Solving Optimal Control Problem Governed by Fractional Diffusion Equations with Fractional Noise. J Sci Comput 94, 62 (2023). https://doi.org/10.1007/s10915-022-02088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02088-z

Keywords

Navigation