Skip to main content
Log in

Superconvergent Postprocessing of the Continuous Galerkin Time Stepping Method for Nonlinear Initial Value Problems with Application to Parabolic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce and analyze a very simple but efficient postprocessing technique for improving the accuracy of the continuous Galerkin (CG) time stepping method for nonlinear first-order initial value problems with smooth and singular solutions. The key idea of the postprocessing technique is to add a higher order Lobatto polynomial of degree \(k+1\) to the CG solution of degree k. We first establish global superconvergent error bounds for the postprocessed CG approximations over arbitrary time partitions, and as a by-product, it is shown that the convergence rates of the \(L^2\)-, \(H^1\)- and \(L^\infty \)-estimates for the CG method with quasi-uniform meshes for smooth solutions are improved by one order. Moreover, for solutions with initial singularities, we prove that the optimal global error estimates and nodal superconvergent estimate can be obtained for the CG method with graded meshes, and after postprocessing, the convergence rates of the \(L^2\)-, \(H^1\)- and \(L^\infty \)-estimates are also improved by one order. As an application, we apply the superconvergent postprocessing technique to the CG time discretization of nonlinear parabolic equations. Numerical examples are presented to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study.

References

  1. Ahmed, N., Matthies, G.: Higher order continuous Galerkin–Petrov time stepping schemes for transient convection–diffusion–reaction equations. ESAIM Math. Model. Numer. Anal. 49, 1429–1450 (2015)

    Article  MATH  Google Scholar 

  2. Akrivis, G., Makridakis, C.: Galerkin time-stepping methods for nonlinear parabolic equations. M2AN Math. Model. Numer. Anal. 38, 26–289 (2004)

    Article  MATH  Google Scholar 

  3. Antonietti, P.F., Mazzieri, I., Dal Santo, N., Quarteroni, A.: A high-order discontinuous Galerkin approximation to ordinary differential equations with applications to elastodynamics. IMA J. Numer. Anal. 38, 1709–1734 (2018)

    Article  MATH  Google Scholar 

  4. Aziz, A.K., Monk, P.: Continuous finite elements in space and time for the heat equation. Math. Comput. 52, 255–274 (1989)

    Article  MATH  Google Scholar 

  5. Baccouch, M.: Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations. Appl. Numer. Math. 106, 129–153 (2016)

    Article  MATH  Google Scholar 

  6. Baccouch, M.: A posteriori error estimates and adaptivity for the discontinuous Galerkin solutions of nonlinear second-order initial-value problems. Appl. Numer. Math. 121, 18–37 (2017)

    Article  MATH  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)

    Google Scholar 

  8. Cao, W.X., Zhang, Z.M., Zou, Q.S.: Finite volume superconvergence approximation for one-dimensional singularly perturbed problems. J. Comput. Math. 31, 488–508 (2013)

    Article  MATH  Google Scholar 

  9. Celiker, F., Zhang, Z.M., Zhu, H.Q.: Nodal superconvergence of SDFEM for singularly perturbed problems. J. Sci. Comput. 50, 405–433 (2012)

    Article  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  11. Delfour, M., Hager, W., Trochu, F.: Discontinuous Galerkin methods for ordinary differential equations. Math. Comput. 36, 455–473 (1981)

    Article  MATH  Google Scholar 

  12. Estep, D., French, D.: Global error control for the continuous Galerkin finite element method for ordinary differential equations. RAIRO Modél. Math. Anal. Numér. 28, 815–852 (1994)

    Article  MATH  Google Scholar 

  13. Guo, B.Y., Wang, Z.Q.: Legendre-Gauss collocation methods for ordinary differential equations. Adv. Comput. Math. 30, 249–280 (2009)

    Article  MATH  Google Scholar 

  14. Holm, B., Wihler, T.P.: Continuous and discontinuous Galerkin time stepping methods for nonlinear initial value problems with application to finite time blow-up. Numer. Math. 138, 767–799 (2018)

    Article  MATH  Google Scholar 

  15. Huang, Q.M., Xu, X.X., Brunner, H.: Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete Contin. Dyn. Syst. 36, 5423–5443 (2016)

    Article  MATH  Google Scholar 

  16. Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput. 26, 415–426 (1972)

    Article  MATH  Google Scholar 

  17. Hulme, B.L.: Discrete Galerkin and related one-step methods for ordinary differential equations. Math. Comput. 26, 881–891 (1972)

    Article  MATH  Google Scholar 

  18. Kyza, I., Metcalfe, S., Wihler, T.P.: \(hp\)-adaptive Galerkin time stepping methods for nonlinear initial value problems. J. Sci. Comput. 75, 111–127 (2018)

    Article  MATH  Google Scholar 

  19. McLean, W., Mustapha, K.: A second-order accurate numerical method for a fractional wave equation. Numer. Math. 105, 481–510 (2007)

    Article  MATH  Google Scholar 

  20. Meng, T.T., Yi, L.J.: An \(h\)-\(p\) version of the continuous Petrov–Galerkin method for nonlinear delay differential equations. J. Sci. Comput. 74, 1091–1114 (2018)

    Article  MATH  Google Scholar 

  21. Schieweck, F.: A-stable discontinuous Galerkin–Petrov time discretization of higher order. J. Numer. Math. 18, 25–57 (2010)

    Article  MATH  Google Scholar 

  22. Schötzau, D., Schwab, C.: An \(hp\) a-priori error analysis of the DG time-stepping method for initial value problems. Calcolo 37, 207–232 (2000)

    Article  MATH  Google Scholar 

  23. Schötzau, D., Wihler, T.P.: A posteriori error estimation for \(hp\)-version time-stepping methods for parabolic partial differential equations. Numer. Math. 115, 475–509 (2010)

    Article  MATH  Google Scholar 

  24. Schwab, C.: \(p\)- and \(hp\)- Finite Element Methods. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  25. Wei, Y.C., Yi, L.J.: An \(hp\)-version of the \(C^0\)-continuous Petrov–Galerkin time stepping method for nonlinear second-order initial value problems. Adv. Comput. Math. 46, Paper No. 56 (2020)

  26. Wihler, T.P.: An a priori error analysis of the \(hp\)-version of the continuous Galerkin FEM for nonlinear initial value problems. J. Sci. Comput. 25, 523–549 (2005)

    Article  MATH  Google Scholar 

  27. Yi, L.J.: An \(L^\infty \)-error estimate for the \(h\)-\(p\) version continuous Petrov–Galerkin method for nonlinear initial value problems, East Asian. J. Appl. Math. 5, 301–311 (2015)

    MATH  Google Scholar 

  28. Yi, L.J., Guo, B.Q.: An \(h\)-\(p\) version of the continuous Petrov–Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernels. SIAM J. Numer. Anal. 53, 2677–2704 (2015)

    Article  MATH  Google Scholar 

  29. Yi, L.J., Guo, B.Q.: The \(h\)-\(p\) version of the continuous Petrov–Galerkin method for nonlinear Volterra functional integro-differential equations with vanishing delays. Int. J. Numer. Anal. Model. 15, 26–47 (2018)

    MATH  Google Scholar 

  30. Zhu, H.Q., Celiker, F.: Nodal superconvergence of the local discontinuous Galerkin method for singularly perturbed problems. J. Comput. Appl. Math. 330, 95–116 (2018)

    Article  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Yi.

Ethics declarations

Conflict of interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of this author is supported in part by the National Natural Science Foundation of China (Nos. 12171322, 11771298 and 12271366), the Natural Science Foundation of Shanghai (Nos. 21ZR1447200 and 22ZR1445500), and the Science and Technology Innovation Plan of Shanghai (No. 20JC1414200).

Appendix A. Some Proofs

Appendix A. Some Proofs

1.1 A.1. Proof of Lemma 2.5

Proof

We generalize the idea in [5] (where nodal superconvergence of the DG method has been studied) to the CG method. For convenience, we set \(e:=u-U\). By (1.1) and (2.2), we have

$$\begin{aligned} \int _{I_n} e'\varphi dt=\int _{I_n}(f(t,u(t))-f(t,U(t))) \varphi dt,\quad \forall \varphi \in P_{k-1}(I_n). \end{aligned}$$
(A.1)

Assume that there is a positive constant M such that \(|f_{uu}(t, u)|\le M\) on \({\bar{I}}\times {\mathbb {R}}\). Using the classical Taylor’s theorem with Lagrange remainder in the variable u, there exists a function \(\chi \), whose value \(\chi (t)\) at t is between u(t) and U(t), such that

$$\begin{aligned} f(t,u)-f(t,U)=\theta e +Re^2, \quad t\in I, \end{aligned}$$
(A.2)

where

$$\begin{aligned} \theta (t):=f_u(t,u(t))\quad \text{ and } \quad R(t):=-\frac{f_{uu}(t,\chi (t))}{2}. \end{aligned}$$
(A.3)

Clearly, there holds

$$\begin{aligned} |R|\le \frac{M}{2}, \quad t\in I. \end{aligned}$$
(A.4)

Inserting (A.2) into (A.1), yields

$$\begin{aligned} \int _{I_n} (e'-\theta e)\varphi dt={\int _{I_n}Re^2\varphi dt} ,\quad \forall \varphi \in P_{k-1}(I_n). \end{aligned}$$
(A.5)

We next construct an auxiliary problem: find v such that

$$\begin{aligned} \left\{ \begin{aligned}&v'+\theta v=0,\quad t\in [0,t_n),\\&v(t_n)=e(t_n). \end{aligned} \right. \end{aligned}$$
(A.6)

Obviously, the exact solution of (A.6) can be expressed as

$$\begin{aligned} v (t)=e(t_n) \exp \left( \int _{t}^{t_n}\theta (y)dy\right) {:=e(t_n)w(t),} \end{aligned}$$

where the function \(w(t)=\exp \left( \int _{t}^{t_n}\theta (y)dy\right) \) with \(\theta (y)= f_u(y,u(y))\). Assume that \(f_u(t,u(t))\in C^{k-1}({\bar{I}})\). Then we have \(w \in C^{k}([0,t_n))\), which implies that

$$\begin{aligned} \Vert v\Vert _{H^{k}(0,t_n)}\le C|e(t_n)|. \end{aligned}$$
(A.7)

Using integration by parts, the fact \(e(0)=0\) and (A.6), gives

$$\begin{aligned} \int _{0}^{t_n}(e'-\theta e)v dt=e(t_n)v(t_n)-e(0)v(0)-\int _{0}^{t_n}(v '+\theta v ) e dt=e^2(t_n). \end{aligned}$$
(A.8)

For any function \(w\in L^2(I_n)\), we denote by \(\pi _{I_n}^{k-1,*}w\in P_{k-1}(I_n)\) the usual \(L^2\)-projection of w onto \(P_{k-1}(I_n)\), namely,

$$\begin{aligned} \displaystyle \int _{I_n} (w- \pi _{I_n}^{k-1,*}w)\varphi dt =0, \quad \forall \varphi \in P_{k-1}(I_n) \end{aligned}$$
(A.9)

for \(k \ge 1\). Then, for \(w\in H^k(I_n)\) there holds (cf. [24])

$$\begin{aligned} \Vert w-\pi ^{k-1,*}_{I_n} w\Vert _{L^2(I_n)}\le C h_n^k\Vert w\Vert _{H^k(I_n)}. \end{aligned}$$
(A.10)

Using (A.5), (A.4), the Cauchy–Schwarz inequality and \(L^2\)-stability of the \(L^2\)-projection operator \(\pi _{I_n}^{k-1,*}\), we get

$$\begin{aligned} \begin{aligned} \int _{0}^{t_n}(e'-\theta e)v dt&=\displaystyle \sum _{i=1}^n \int _{I_i}(e'-\theta e)(v-\pi ^{k-1,*}_{I_i} v) dt{+\sum _{i=1}^n \int _{I_i}Re^2 \pi ^{k-1,*}_{I_i} v dt}\\&\le \displaystyle \sum _{i=1}^n \Vert e'-\theta e\Vert _{L^2(I_i)}\Vert v-\pi ^{k-1,*}_{I_i} v\Vert _{L^2(I_i)}{+C\sum _{i=1}^n \Vert e^2\Vert _{L^2(I_i)} \Vert \pi ^{k-1,*}_{I_i} v\Vert _{L^2(I_i)} }\\&{ \le C\Vert e\Vert _{H^1(0,t_n)}\left( \displaystyle \sum _{i=1}^n \Vert v-\pi ^{k-1,*}_{I_i} v\Vert ^2_{L^2(I_i)}\right) ^{\frac{1}{2}}+C \Vert e^2\Vert _{L^2(0,t_n)} \Vert v\Vert _{L^2(0,t_n)} }. \end{aligned} \end{aligned}$$
(A.11)

Noticing the well-known embedding inequality, namely, \(\Vert e\Vert _{L^\infty (0,t_n)}\le C \Vert e\Vert _{H^1(0,t_n)}\), we obtain

$$\begin{aligned} \Vert e^2\Vert _{L^2(0,t_n)}=\left( \int _{0}^{t_n}e^4dt\right) ^{\frac{1}{2}}\le \Vert e\Vert _{L^\infty (0,t_n)}\left( \int _{0}^{t_n}e^2dt\right) ^{\frac{1}{2}}\le C\Vert e\Vert _{H^1(0,t_n)}\Vert e\Vert _{L^2(0,t_n)}. \end{aligned}$$
(A.12)

Combining (A.8), (A.11), (A.10), (A.12), (2.23) and (A.7), yields

$$\begin{aligned} \begin{aligned} |e(t_n)|^4&\le C\Vert e\Vert _{H^1(0,t_n)}^2\sum _{i=1}^{n}h_i^{2k}\Vert v\Vert ^2_{H^{k}(I_i)}{+C \Vert e \Vert ^2_{H^1(0,t_n)}\Vert e\Vert ^2_{L^2(0,t_n)} \Vert v\Vert ^2_{L^2(0,t_n)} }\\&\le C h^{2k}\Vert e\Vert _{H^1(I)}^2 \Vert v\Vert ^2_{H^{k}(0,t_n)}{+C h^{2k+2} \Vert e \Vert ^2_{H^1(I)} \Vert v\Vert ^2_{L^2(0,t_n)} }\\&\le C h^{2k} \Vert e\Vert _{H^1(I)}^2 |e(t_n)|^2, \end{aligned} \end{aligned}$$

which implies that

$$\begin{aligned} |e(t_n)|^2\le Ch^{2k} \Vert e\Vert ^2_{H^1(I)}. \end{aligned}$$
(A.13)

Using (A.13) and the \(H^1\)-error estimate (2.24) in Lemma 2.4, gives (2.29). As a direct consequence of (2.29), we get (2.30) easily. This ends the proof. \(\square \)

1.2 A.2. Proof of Lemma 3.6

Proof

We start by dividing the error \(e:=u-U\) into two parts that can be analyzed separately:

$$\begin{aligned} e=\eta +\xi :=(u-\Pi ^k u)+(\Pi ^k u-U), \end{aligned}$$
(A.14)

where U is the CG solution given by (2.1) and \(\Pi ^ku\) is the global projection defined by (2.16). Since Lemma 2.2 can be used to bound \(\eta \), the main task reduces to estimate the term \(\xi \).

We first prove (3.4). Since \(e=\eta +\xi \), using (A.1) we get

$$\begin{aligned} \int _{I_n}\eta '\varphi dt+\int _{I_n}\xi '\varphi dt={\int _{I_n}(f(t,u(t)-f(t,U(t))\varphi dt},\quad \forall \varphi \in P_{k-1}(I_n). \end{aligned}$$

In view of (2.15), we have

$$\begin{aligned} \int _{I_n}\xi '\varphi dt ={ \int _{I_n}(f(t,u(t)-f(t,U(t))\varphi dt}, \quad \forall \varphi \in P_{k-1}(I_n). \end{aligned}$$
(A.15)

Selecting \(\varphi =\xi '\) in (A.15), then using (1.2) and the Cauchy–Schwarz inequality, we obtain

$$\begin{aligned} \begin{aligned} \int _{I_n}|\xi '|^2 dt \le { L\int _{I_n}|e\xi '| dt } \le { L}\Vert e\Vert _{L^2(I_n)}\Vert \xi '\Vert _{L^2(I_n)}, \end{aligned} \end{aligned}$$

which implies that

$$\begin{aligned} \Vert \xi ' \Vert _{L^2(I_n)} \le { L}\Vert e\Vert _{L^2(I_n)}. \end{aligned}$$
(A.16)

Summing up (A.16) over all element \(I_n,\ 1\le n\le N\), yields

$$\begin{aligned} \Vert \xi '\Vert ^2_{L^2(I)}=\sum _{n=1}^{N}\Vert \xi ' \Vert ^2_{L^2(I_n)}\le { L^2}\sum _{n=1}^{N}\Vert e\Vert ^2_{L^2(I_n)}={ L^2}\Vert e\Vert ^2_{L^2(I)}, \end{aligned}$$
(A.17)

which together with (2.23) leads to (3.4).

We next prove (3.5). Since

$$\begin{aligned} \xi (t)=\xi (t_n)-\int _{t}^{t_ n}\xi '(s) ds, \quad t\in [t_{n-1},t_n], \end{aligned}$$

then using the Cauchy–Schwarz inequality, gives

$$\begin{aligned} \begin{aligned} |\xi (t)|^2=\left( \xi (t_n)-\int _{t}^{t_n}\xi '(s) ds\right) ^2 \le 2\xi ^2(t_n)+2h_n\Vert \xi '\Vert _{L^2(I_n)}^2. \end{aligned} \end{aligned}$$
(A.18)

Integrating (A.18) with respect to t on \(I_n\), yields

$$\begin{aligned} \Vert \xi \Vert _{L^2(I_n)}^2\le \int _{I_n}2|\xi (t_n)|^2dt+\int _{I_n}2h_n\Vert \xi '\Vert _{L^2(I_n)}^2 dt \le 2h_n|\xi (t_n)|^2+2h_n^2\Vert \xi '\Vert _{L^2(I_n)}^2. \end{aligned}$$
(A.19)

From (2.15), (2.16) and (A.13), we find that

$$\begin{aligned} |\xi (t_n)|^2=|\Pi ^k u(t_n)-U(t_n)|^2=|u(t_n)-U(t_n)|^2=|e(t_n)|^2 \le Ch^{2k} \Vert e\Vert ^2_{H^1(I)}, \end{aligned}$$
(A.20)

Then, summing up (A.19) over all elements \(I_n,\ 1\le n\le N\), using (A.20) and (A.16), we obtain

$$\begin{aligned} \begin{aligned} \Vert \xi \Vert ^2_{L^2(I)}&\le 2\sum _{n=1}^{N}h_n|\xi (t_n)|^2+ 2\sum _{n=1}^{N} h_n^2\Vert \xi '\Vert _{L^2(I_n)}^2\\&\le C\sum _{n=1}^{N}\left( h_n h^{2k} \Vert e\Vert ^2_{H^1(I)}\right) +C\sum _{n=1}^{N}\left( h_n^2\Vert e\Vert ^2_{L^2(I_n)}\right) \\&\le C h^{2k}\Vert e\Vert ^2_{H^1(I)} \sum _{n=1}^{N}h_n +Ch^2 \sum _{n=1}^{N}\Vert e\Vert ^2_{L^2(I_n)}\\&\le Ch^{2k}\Vert e\Vert ^2_{H^1(I)}+Ch^2\Vert e\Vert ^2_{L^2(I)}. \end{aligned} \end{aligned}$$
(A.21)

Inserting (2.23) and (2.24) into (A.21), gives (3.5).

It remains to prove (3.6). According to the Sobolev inequality (see (3.9) of [13])

$$\begin{aligned} \Vert v\Vert ^2_{L^{\infty }(a,b)}\le \frac{2}{b-a}\Vert v\Vert ^2_{L^2(a,b)}+2(b-a)\Vert v'\Vert ^2_{L^2(a,b)},\quad \forall v\in H^1(a,b), \end{aligned}$$
(A.22)

we have

$$\begin{aligned} \Vert \xi \Vert ^2_{L^{\infty }(I_n)}\le \frac{2}{h_n}\Vert \xi \Vert ^2_{L^2(I_n)}+2h_n\Vert \xi '\Vert ^2_{L^2(I_n)}. \end{aligned}$$
(A.23)

Inserting (A.19) into (A.23), then using (A.20) and (A.16) we get

$$\begin{aligned} \Vert \xi \Vert ^2_{L^{\infty }(I_n)} \le C |\xi (t_n)|^2+C h_n\Vert \xi '\Vert _{L^2(I_n)}^2 \le Ch^{2k} \Vert e\Vert ^2_{H^1(I)}+Ch_n\Vert e\Vert _{L^2(I_n)}^2. \end{aligned}$$
(A.24)

Noting the fact that (see pages 532–533 of [26])

$$\begin{aligned} \Vert e\Vert ^2_{L^2(I_n)}\le Ch_n\Vert u-\Pi ^k u\Vert ^2_{L^2(0,t_n)}+C\Vert u-\Pi ^k u\Vert ^2_{L^2(I_n)}, \end{aligned}$$
(A.25)

and using (A.24), we get

$$\begin{aligned} \Vert \xi \Vert ^2_{L^{\infty }(I_n)}\le Ch^{2k} \Vert e\Vert ^2_{H^1(I)}+Ch_n^2\Vert u-\Pi ^k u\Vert ^2_{L^2(I)}+Ch_n\Vert u-\Pi ^k u\Vert ^2_{L^2(I_n)}. \end{aligned}$$
(A.26)

Consequently, using (2.17), (2.24) and the fact \(\Vert u\Vert ^2_{H^{k+1}(I_n)} \le C h_n \Vert u\Vert ^2_{W^{k+1,\infty }(I_n)}\), yields

$$\begin{aligned} \begin{aligned} \Vert \xi \Vert ^2_{L^{\infty }(I)}&\le Ch^{2k} \Vert e\Vert ^2_{H^1(I)}+Ch^2\Vert u-\Pi ^k u\Vert ^2_{L^2(I)}+C\max _{1\le n\le N} \left\{ h_n\Vert u-\Pi ^k u\Vert ^2_{L^2(I_n)}\right\} \\&\le Ch^{2k} \sum _{n=1}^{N}h_n^{2k}\Vert u\Vert ^2_{H^{k+1}(I_n)}+ Ch^2 \sum _{n=1}^{N}h_n^{2k+2}\Vert u\Vert ^2_{H^{k+1}(I_n)}\\&\quad + C\max \limits _{1 \le n\le N}\left\{ h_n^{2k+3}\Vert u\Vert ^2_{H^{k+1}(I_n)}\right\} \\&\le Ch^{2k} \sum _{n=1}^{N}h_n^{2k+1}\Vert u\Vert ^2_{W^{k+1,\infty }(I_n)}+ Ch^2 \sum _{n=1}^{N}h_n^{2k+3}\Vert u\Vert ^2_{W^{k+1,\infty }(I_n)}\\&\quad + C\max \limits _{1 \le n\le N}\left\{ h_n^{2k+4}\Vert u\Vert ^2_{W^{k+1,\infty }(I_n)}\right\} . \end{aligned} \end{aligned}$$

This completes the proof of (3.6).

Finally, using (3.4)–(3.6) and the quasi-uniformity of the time partition, we obtain (3.7)–(3.9). \(\square \)

1.3 A.3. Proof of Theorem 3.2

Proof

We proceed in several steps.

Step 1 We first prove (3.30). Due to (2.20) and (2.16), there holds

$$\begin{aligned} \Vert u-U\Vert ^2_{L^2(I)} \le C\Vert u-\pi ^k_{I_1}u\Vert ^2_{L^2(I_1)}+C\sum _{n=2}^{N}\Vert u-\pi ^k_{I_n}u\Vert ^2_{L^2(I_n)}:=A_1+A_2. \end{aligned}$$
(A.27)

By (3.27), we have

$$\begin{aligned} \Vert u\Vert ^2_{H^1(I_1)}\le C\int _{0}^{t_1}\left( t^{2\sigma }+t^{2(\sigma -1)}\right) dt \le C t_1^{2\sigma -1} \end{aligned}$$
(A.28)

for \(\sigma >\frac{1}{2}\). Then, using (2.17) with \(s_1=0\), (A.28) and (3.28), we get

$$\begin{aligned} A_1=C\Vert u-\pi ^k_{I_1}u\Vert ^2_{L^2(I_1)}\le Ch_1^2\Vert u\Vert ^2_{H^1(I_1)} \le Ch_1^2t_1^{2\sigma -1} \le C\tau ^{(2\sigma +1)\beta }. \end{aligned}$$
(A.29)

Moreover, using (2.17) with \(s_n=k\), (3.27) and (3.28), yields

$$\begin{aligned} A_2&=C\sum _{n=2}^{N}\Vert u-\pi ^k_{I_n}u\Vert ^2_{L^2(I_n)} \le C\sum _{n=2}^{N}h_n^{2k+2}\Vert u\Vert ^2_{H^{k+1}(I_n)}\nonumber \\&\le C\sum _{n=2}^{N}\tau ^{2k+2}t_n^{(2k+2)(1-\frac{1}{\beta })} \int _{t_{n-1}}^{t_n}\left( t^{2\sigma }+t^{2(\sigma -1)}+\cdots +t^{2(\sigma -k-1)}\right) dt \nonumber \\&\le C\tau ^{2k+2}\sum _{n=2}^{N}t_n^{(2k+2)(1-\frac{1}{\beta })}t_{n-1}^{-(2k+2)(1-\frac{1}{\beta })} \int _{t_{n-1}}^{t_n} t^{(2k+2)(1-\frac{1}{\beta })}\left( t^{2\sigma }+t^{2(\sigma -1)}+\cdots +t^{2(\sigma -k-1)}\right) dt\nonumber \\&\le C\tau ^{2k+2}\int _{t_1}^{T}\left( t^{2\sigma -\frac{2k+2}{\beta }}t^{2k+2}+t^{2\sigma -\frac{2k+2}{\beta }}t^{2k}+\cdots +t^{2\sigma -\frac{2k+2}{\beta }}\right) dt \nonumber \\&\le C\tau ^{2k+2}\int _{t_1}^{T}\left( t^{2\sigma -\frac{2k+2}{\beta }}T^{2k+2}+t^{2\sigma -\frac{2k+2}{\beta }}T^{2k}+\cdots +t^{2\sigma -\frac{2k+2}{\beta }}\right) dt \nonumber \\&\le C\tau ^{2k+2}\int _{t_1}^{T}t^{2\sigma -\frac{2k+2}{\beta }} dt. \end{aligned}$$
(A.30)

Suppose that \(2\sigma -\frac{2k+2}{\beta }>-1\), i.e., \(\beta >\frac{k+1}{\sigma +1/2}\). From (A.29) and (A.30), we obtain

$$\begin{aligned}{} & {} A_1 \le C\tau ^{(2\sigma +1)\beta } \le C\tau ^{2k+2}, \end{aligned}$$
(A.31)
$$\begin{aligned}{} & {} A_2 \le C\tau ^{2k+2}\int _{t_1}^{T}t^{2\sigma -\frac{2k+2}{\beta }} dt \le C\tau ^{2k+2}T^{2\sigma +1-\frac{2k+2}{\beta }}\le C\tau ^{2k+2}. \end{aligned}$$
(A.32)

Combining (A.27), (A.31) and (A.32) gives (3.30).

Step 2 We next prove (3.31). Due to (2.21) and (2.16), there holds

$$\begin{aligned} \Vert u-U\Vert ^2_{H^1(I)} \le C\Vert u-\pi ^k_{I_1}u\Vert ^2_{H^1(I_1)}+C\sum _{n=2}^{N}\Vert u-\pi ^k_{I_n}u\Vert ^2_{H^1(I_n)}:=B_1+B_2. \end{aligned}$$
(A.33)

Using (2.18) with \(s_1=0\), (A.28) and (3.28), we get

$$\begin{aligned} B_1=C\Vert u-\pi ^k_{I_1}u\Vert ^2_{H^1(I_1)} \le C\Vert u\Vert ^2_{H^1(I_1)}\le Ct_1^{2\sigma -1} \le C\tau ^{(2\sigma -1)\beta }. \end{aligned}$$
(A.34)

Moreover, using (2.18) with \(s_n=k\), (3.27) and (3.28), gives

$$\begin{aligned} B_2&=\sum _{n=2}^{N}\Vert u-\pi ^k_{I_n}u\Vert ^2_{H^1(I_n)} \le C\sum _{n=2}^{N}h_n^{2k}\Vert u\Vert ^2_{H^{k+1}(I_n)}\nonumber \\&\le C\sum _{n=2}^{N}\tau ^{2k}t_n^{2k(1-\frac{1}{\beta })} \int _{t_{n-1}}^{t_n}\left( t^{2\sigma }+t^{2(\sigma -1)}+\cdots +t^{2(\sigma -k-1)}\right) dt\nonumber \\&\le C\sum _{n=2}^{N}\tau ^{2k}t_n^{2k(1-\frac{1}{\beta })}t_{n-1}^{-2k(1-\frac{1}{\beta })} \int _{t_{n-1}}^{t_n} t^{2k(1-\frac{1}{\beta })} \left( t^{2\sigma }+t^{2(\sigma -1)}+\cdots +t^{2(\sigma -k-1)}\right) dt\nonumber \\&\le C\tau ^{2k}\int _{t_1}^{T}\left( t^{2\sigma -2-\frac{2k}{\beta }}t^{2k+2}\right. \left. +t^{2\sigma -2-\frac{2k}{\beta }}t^{2k}+\cdots +t^{2\sigma -2-\frac{2k}{\beta }}\right) dt\nonumber \\&\le C\tau ^{2k}\int _{t_1}^{T}t^{2\sigma -2-\frac{2k}{\beta }} dt. \end{aligned}$$
(A.35)

Suppose that \(2\sigma -2-\frac{2k}{\beta }>-1\), i.e., \(\beta >\frac{k}{\sigma -1/2}\). From (A.34) and (A.35), we have

$$\begin{aligned}{} & {} B_1 \le C\tau ^{(2\sigma -1)\beta } \le C\tau ^{2k}, \end{aligned}$$
(A.36)
$$\begin{aligned}{} & {} B_2 \le C\tau ^{2k}\int _{t_1}^{T}t^{2\sigma -2-\frac{2k}{\beta }} dt \le C\tau ^{2k}T^{2\sigma -1-\frac{2k}{\beta }}\le C\tau ^{2k}. \end{aligned}$$
(A.37)

Combining (A.33), (A.36) and (A.37) gives (3.31).

Step 3 We further show (3.32). In view of Lemma 2.3, we have

$$\begin{aligned} \Vert u-U\Vert ^2_{L^\infty (I)}\le C\Vert u-\Pi ^k u\Vert ^2_{L^\infty (I)}\le C \max _{1\le n\le N} \left\{ \Vert u-\pi ^k_{I_n}u\Vert ^2_{L^\infty (I_n)}\right\} . \end{aligned}$$
(A.38)

On the one hand, using the Sobolev inequality (A.22), (3.28), (A.29) and (A.34), we get

$$\begin{aligned} \Vert u-\pi ^k_{I_1}u\Vert ^2_{L^\infty (I_1)} \le \frac{2}{h_1}\Vert u-\pi ^k_{I_1}u\Vert ^2_{L^2(I_1)}+2h_1\Vert u-\pi ^k_{I_1}u\Vert ^2_{H^1(I_1)} \le C\tau ^{2\sigma \beta }. \end{aligned}$$
(A.39)

On the other hand, using (2.19) with \(s_n=k\), (3.27) and (3.28), we obtain

$$\begin{aligned} \begin{aligned} \Vert u-\pi ^k_{I_n}u\Vert ^2_{L^\infty (I_n)}&\le Ch_n^{2k+2}\Vert u\Vert ^2_{W^{k+1,\infty }(I_n)} \\&\le C\tau ^{2k+2}t_n^{(2k+2)(1-\frac{1}{\beta })} \max _{t\in {\bar{I}}_n}\left\{ t^{2\sigma }, t^{2(\sigma -1)},\cdots , t^{2(\sigma -k-1)}\right\} \\&\le C\tau ^{2k+2}t_n^{(2k+2)(1-\frac{1}{\beta })}t_{n-1}^{-(2k+2)(1-\frac{1}{\beta })} \max _{t\in {\bar{I}}_n} \left\{ t^{2\sigma -\frac{2k+2}{\beta }+2k+2}, \cdots , t^{2\sigma -\frac{2k+2}{\beta }}\right\} \\&\le C\tau ^{2k+2} \max _{t_1\le t\le T}\left\{ t^{2\sigma -\frac{2k+2}{\beta }}t^{2k+2},t^{2\sigma -\frac{2k+2}{\beta }}t^{2k},\cdots , t^{2\sigma -\frac{2k+2}{\beta }}\right\} \\&\le C\tau ^{2k+2}\max _{t_1\le t\le T}\left\{ t^{2\sigma -\frac{2k+2}{\beta }}\right\} \end{aligned} \end{aligned}$$
(A.40)

for \(2\le n\le N\). Suppose that \(2\sigma -\frac{2k+2}{\beta }\ge 0\), i.e., \(\beta \ge \frac{k+1}{\sigma }\). From (A.39) and (A.40), we have

$$\begin{aligned}{} & {} \Vert u-\pi ^k_{I_1}u\Vert ^2_{L^\infty (I_1)} \le C\tau ^{2\sigma \beta }\le C\tau ^{2k+2}, \end{aligned}$$
(A.41)
$$\begin{aligned}{} & {} \Vert u-\pi ^k_{I_n}u\Vert ^2_{L^\infty (I_n)} \le C\tau ^{2k+2}T^{2\sigma -\frac{2k+2}{\beta }}\le C\tau ^{2k+2}, \quad 2\le n\le N. \end{aligned}$$
(A.42)

Combining (A.38), (A.41) and (A.42) gives (3.32).

Step 4 It remains to show (3.33). Similar to the proof of (2.30) for regular solutions, we consider the same auxiliary problem (A.6) with exact solution

$$\begin{aligned} v (t)= e(t_n) \exp \left( \int _{t}^{t_n}\theta (y)dy\right) :=e(t_n)w(t). \end{aligned}$$
(A.43)

Here, the function \(w(t)=\exp \left( \int _{t}^{t_n}\theta (y)dy\right) \) with \(\theta (y)= {f_u(y,u(y))}\). Assume that \(f_u(t,u(t))\in C({\bar{I}})\). In view of the definition of the function \(\theta \), we may assume that the solution v of the auxiliary problem (A.6) exhibits the similar regularity as the solution of the original problem (1.1), namely,

$$\begin{aligned} |v^{(s)}(t)|= |e(t_n)w^{(s)}(t)|\le C|e(t_n)|t^{\sigma -s},\quad t\in (0,T],\quad s\in {\mathbb {N}}_0,\quad {\sigma \ge 1} \end{aligned}$$
(A.44)

for some positive constants C.

Combining (A.8), (A.43) and (A.11), gives

$$\begin{aligned} \begin{aligned} e^2(t_n)&=\int _{0}^{t_n}(e'-\theta e)v dt = e(t_n)\displaystyle \sum _{i=1}^n \int _{I_i}(e'-\theta e)(w-\pi ^{k-1,*}_{I_i} w) dt\\&\quad {+e(t_n)\displaystyle \sum _{i=1}^n \int _{I_i}Re^2 \pi ^{k-1,*}_{I_i} w dt}\\&\le C|e(t_n)| \cdot \Vert e\Vert _{H^1(0,t_n)}\left( \displaystyle \sum _{i=1}^n \Vert w-\pi ^{k-1,*}_{I_i} w\Vert ^2_{L^2(I_i)}\right) ^{\frac{1}{2}}\\&\quad {+ C|e(t_n)|\Vert e^2\Vert _{L^2(0,t_n)}\Vert w\Vert _{L^2(0,t_n)}}, \end{aligned} \end{aligned}$$

which together with (A.12) leads to

$$\begin{aligned} |e(t_n)| \le C \Vert e\Vert _{H^1(0,t_n)}\left( \displaystyle \sum _{i=1}^n \Vert w-\pi ^{k-1,*}_{I_i} w\Vert ^2_{L^2(I_i)}\right) ^{\frac{1}{2}}{+ C \Vert e \Vert _{L^2(0,t_n)}\Vert e \Vert _{H^1(0,t_n)}\Vert w\Vert _{L^2(0,t_n)}}. \end{aligned}$$
(A.45)

Here, \(\pi _{I_n}^{k-1,*}w\) is the \(L^2\)-projection of w onto \(P_{k-1}(I_n)\) as defined in (A.9).

Using the \(L^2\)-stability of the projection operator \(\pi _{I_n}^{k-1,*}\), (A.44) and (3.28), we have

$$\begin{aligned} \Vert w-\pi ^{k-1,*}_{I_1} w\Vert ^2_{L^2(I_1)}\le 4\Vert w\Vert ^2_{L^2(I_1)} \le C\int _{0}^{t_1} t^{2\sigma } dt \le C h_1^{2\sigma +1} \le C \tau ^{\beta (2\sigma +1)} {\le C\tau ^{2k}} \end{aligned}$$
(A.46)

for \(\beta >\frac{k}{\sigma +1/2}\). Similarly to (A.30), using (A.10), (A.44) and (3.28), we have

$$\begin{aligned} \sum _{i=2}^{n}\Vert w-\pi ^{k-1,*}_{I_1} w\Vert ^2_{L^2(I_i)}\le & {} C\sum _{i=2}^{n}h_i^{2k}\Vert w\Vert ^2_{H^{k}(I_i)} \le C\tau ^{2k}\int _{t_1}^{t_n}t^{2\sigma -\frac{2k}{\beta }} dt\nonumber \\\le & {} C \tau ^{2k}\int _{t_1}^{T}t^{2\sigma -\frac{2k}{\beta }} dt {\le C\tau ^{2k}} \end{aligned}$$
(A.47)

for \(\beta >\frac{k}{\sigma +1/2}\). In view of (A.46) and (A.44), we get

$$\begin{aligned} \Vert w\Vert ^2_{L^2(0,t_n)}= \Vert w\Vert ^2_{L^2(I_1)}+\sum _{i=2}^{n}\Vert w\Vert ^2_{L^2(I_i)}\le C\tau ^{\beta (2\sigma +1)} +\int _{t_1}^{t_n}t^{2\sigma }dt\le CT^{2\sigma +1}\le C. \end{aligned}$$
(A.48)

Inserting (A.46)–(A.48) into (A.45), gives

$$\begin{aligned} |e(t_n)| \le C \tau ^{k} \Vert e\Vert _{H^1(I)} + { C \Vert e \Vert _{L^2(I)}\Vert e \Vert _{H^1(I)}} \end{aligned}$$

for \(\beta >\frac{k}{\sigma +1/2}\), which together with (3.31) and (3.30) leads to

$$\begin{aligned} |e(t_n)| \le { C \tau ^{2k}+C\tau ^{2k+1}} \le C \tau ^{2k} \end{aligned}$$

for \(\beta > \max \{\frac{k+1}{\sigma +1/2}, \frac{k}{\sigma -1/2}\}\). This proves (3.33). \(\square \)

1.4 A.4. Proof of Lemma 3.7

Proof

We first recall the error splitting (A.14) that \(e=\xi +\eta \), where \(\eta =u-\Pi ^k u\) and \(\xi =\Pi ^k u-U\). In view of (A.17) and (3.30), there holds

$$\begin{aligned} \Vert \xi '\Vert _{L^2(I)} \le C\Vert e\Vert _{L^2(I)}\le C\tau ^{k+1}, \quad \text{ if }~~ \beta >\frac{k+1}{\sigma +1/2}. \end{aligned}$$

This proves (3.34).

We next show (3.35). Noting the facts that \(\xi (t_n)=e(t_n)\) and \(h_n\le C \tau \), then using (A.21), (3.33) and (3.34), we have

$$\begin{aligned} \begin{aligned} \Vert \xi \Vert ^2_{L^2(I)}&\le 2\sum _{n=1}^{N}h_n|\xi (t_n)|^2+ 2\sum _{n=1}^{N} h_n^2\Vert \xi '\Vert _{L^2(I_n)}^2\\&\le 2 \max _{1\le n\le N}|e(t_n)|^2 \sum _{n=1}^{N}h_n +C \tau ^2 \Vert \xi '\Vert ^2_{L^2(I)}\\&\le C\tau ^{4k} +C\tau ^{2k+4}\\&\le C\tau ^{\min \{4k, 2k+4\}} \end{aligned} \end{aligned}$$

for \(\beta > \max \{\frac{k+1}{\sigma +1/2}, \frac{k}{\sigma -1/2}\}\), which implies (3.35).

It remains to prove (3.36). Using again the facts that \(\xi (t_n)=e(t_n)\) and \(h_n\le C \tau \), combining (A.24), (3.33), (A.16), (A.25), (A.27), (A.31) and (A.32), results in

$$\begin{aligned} \begin{aligned} \Vert \xi \Vert ^2_{L^{\infty }(I_n)}&\le C |\xi (t_n)|^2+C h_n\Vert \xi '\Vert _{L^2(I_n)}^2 \le C\tau ^{4k} +Ch_n\Vert e\Vert _{L^2(I_n)}^2\\&\le C \tau ^{4k}+Ch_n^2\Vert u-\Pi ^k u\Vert ^2_{L^2(I)}+Ch_n\Vert u-\pi ^k_{I_n} u\Vert ^2_{L^2(I_n)}\\&\le C \tau ^{4k}+C\tau ^{2k+4}+Ch_n\Vert u-\pi ^k_{I_n} u\Vert ^2_{L^2(I_n)} \end{aligned} \end{aligned}$$

for \(\beta > \max \{\frac{k+1}{\sigma +1/2}, \frac{k}{\sigma -1/2}\}\). Therefore, we have

$$\begin{aligned} \Vert \xi \Vert ^2_{L^{\infty }(I)}\le \max _{1\le n\le N}\left\{ \Vert \xi \Vert ^2_{L^{\infty }(I_n)} \right\} \le C \tau ^{4k}+C\tau ^{2k+4}+ C\max _{1\le n\le N}\left\{ h_n\Vert u-\pi ^k_{I_n} u\Vert ^2_{L^2(I_n)}\right\} \end{aligned}$$
(A.49)

for \(\beta > \max \{\frac{k+1}{\sigma +1/2}, \frac{k}{\sigma -1/2}\}\).

For \(n=1\), using (2.17) with \(s_1=0\), (A.28) and (3.28), gives

$$\begin{aligned} h_1\Vert u-\pi ^{k}_{I_1} u\Vert ^2_{L^2(I_1)}\le Ch_1^3\Vert u\Vert ^2_{H^1(I_1)}\le Ch_1^3t_1^{2\sigma -1}\le C\tau ^{(2\sigma +2)\beta } \le C\tau ^{2k+4} \end{aligned}$$
(A.50)

for \(\beta \ge \frac{k+2}{\sigma +1}\). For \(2\le n\le N\), using (2.17) with \(s_n=k\), the fact \(\Vert u\Vert ^2_{H^{k+1}(I_n)} \le C h_n \Vert u\Vert ^2_{W^{k+1,\infty }(I_n)}\), (3.27) and (3.28), results in

$$\begin{aligned} \begin{aligned}&h_n\Vert u-\pi ^{k}_{I_n} u\Vert ^2_{L^2(I_n)}\\&\quad \le C h_n^{2k+3}\Vert u\Vert ^2_{H^{k+1}(I_n)} \le C h_n^{2k+4}\Vert u\Vert ^2_{W^{k+1,\infty }(I_n)} \\&\quad \le C\tau ^{2k+4} t_n^{(2k+4)(1-\frac{1}{\beta })} \max _{t\in {\bar{I}}_n}\left\{ t^{2\sigma }, t^{2(\sigma -1)},\cdots , t^{2(\sigma -k-1)}\right\} \\&\quad \le C\tau ^{2k+4} t_n^{(2k+4)(1-\frac{1}{\beta })} t_{n-1}^{-(2k+4)(1-\frac{1}{\beta })} \max _{t\in {\bar{I}}_n}\left\{ t^{2\sigma -\frac{2k+4}{\beta }+2k+4}, \cdots , t^{2\sigma -\frac{2k+4}{\beta }+2}\right\} \\&\quad \le C\tau ^{2k+4} \max _{t_1 \le t \le T}\left\{ t^{2\sigma -\frac{2k+4}{\beta }+2k+4}, t^{2\sigma -\frac{2k+4}{\beta }+2k+2}, \cdots , t^{2\sigma -\frac{2k+4}{\beta }+2}\right\} \\&\quad \le C\tau ^{2k+4} \max _{t_1\le t\le T}\left\{ t^{2\sigma -\frac{2k+4}{\beta }+2}\right\} \\&\quad \le C\tau ^{2k+4} T^{2\sigma -\frac{2k+4}{\beta }+2}\\&\quad \le C\tau ^{2k+4}, \end{aligned} \end{aligned}$$
(A.51)

provided that \(2\sigma -\frac{2k+4}{\beta }+2\ge 0\), i.e., \(\beta \ge \frac{k+2}{\sigma +1}\).

Combining (A.49), (A.50) and (A.51), yields

$$\begin{aligned} \Vert \xi \Vert ^2_{L^{\infty }(I)} \le C \tau ^{4k}+C\tau ^{2k+4}\le C\tau ^{ \min \{4k, 2k+4\}}, \end{aligned}$$

provided that \(\beta > \max \{\frac{k+2}{\sigma +1}, \frac{k+1}{\sigma +1/2}, \frac{k}{\sigma -1/2}\}\). This ends the proof of (3.36). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yi, L. Superconvergent Postprocessing of the Continuous Galerkin Time Stepping Method for Nonlinear Initial Value Problems with Application to Parabolic Problems. J Sci Comput 94, 31 (2023). https://doi.org/10.1007/s10915-022-02086-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02086-1

Keywords

Mathematics Subject Classification

Navigation