Skip to main content
Log in

Scale-Invariant Multi-resolution Alternative WENO Scheme for the Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The finite difference multi-resolution alternative weighted essentially non-oscillatory (MR-AWENO) scheme has been designed to solve hyperbolic conservation laws (Wang et al. in Comput Methods Appl Mech Eng 382:113853, 2021). However, the scheme is not scale-invariant and generates numerical oscillations near strong shocks. To overcome this issue, we design the scale-invariant Si-weights and the MR-AWENO-Si operator by including the new global smoothness indicator and the descaler. The resulting scale-invariant MR-AWENO-Si scheme captures discontinuity of any scale in the essentially non-oscillatory (ENO) way efficiently and robustly. We also demonstrate an interesting application of the scale-invariant scheme to achieve the well-balanced property for the compressible Euler equations under a gravitational potential field by modifying the numerical fluxes, reformulating the source terms, and enforcing the MR-AWENO-Si operator. A theoretical proof is given, and extensive one- and two-dimensional classical examples are used to verify the performance of the MR-AWENO-Si scheme in terms of accuracy, robustness, and well-balanced property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The custom codes generated during the current study are available from the corresponding author on reasonable request. No data sets were generated or analyzed during the current study.

References

  1. Balsara, D., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227(6), 3191–3211 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Botta, N., Klein, R., Langenberg, S., Lutzenkirchen, S.: Well-balanced finite volume methods for nearly hydrostatic flows. J. Comput. Phys. 196, 539–565 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Castro, M.J., Parés, C.: Well-balanced high-order finite volume methods for systems of balance laws. J. Sci. Comput. 82, 48 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Chandrashekar, P., Klingenberg, C.: A second order well-balanced finite volume scheme for Euler equations with gravity. SIAM J. Sci. Comput. 37, 382–402 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Deng, X., Zhang, H.: Developing high-order weighted compact nonlinear schemes. J. Comput. Phys. 165, 22–44 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Don, W.S., Li, R., Wang, B.-S., Wang, Y.: A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 448, 110724 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Einfeldt, B., Munz, C.D., Roe, P.L., Sjögreen, B.: On Godunov-type methods near low densities. J. Comput. Phys. 92, 273–295 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 352, 498–515 (2018)

    MathSciNet  Google Scholar 

  11. Gao, Z., Fang, L.-L., Wang, B.-S., Wang, Y., Don, W.S.: Seventh and ninth orders alternative WENO finite difference schemes for hyperbolic conservation laws. Comput. Fluids 202, 104519 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Ghosh, D., Constantinescu, E.M.: A well-balanced, conservative finite difference algorithm for atmospheric flows. AIAA J. 54, 1370–1385 (2016)

    Google Scholar 

  13. Grosheintz-Laval, L., Käppeli, R.: High-order well-balanced finite volume schemes for the Euler equations with gravitation. J. Comput. Phys. 378, 324–343 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Grosheintz-Laval, L., Käppeli, R.: Well-balanced finite volume schemes for nearly steady adiabatic flows. J. Comput. Phys. 423, 109805 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Hu, X.Y., Adams, N.A., Shu, C.-W.: Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. J. Comput. Phys. 242, 169–180 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Jia, F.L., Gao, Z., Don, W.S.: A spectral study on the dissipation and dispersion of the WENO schemes. J. Sci. Comput. 63(1), 49–77 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with Lax–Wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35, A1137–A1160 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Jiang, Y., Shu, C.-W., Zhang, M.: Free-stream preserving finite difference schemes on curvilinear meshes. Methods Appl. Anal. 21, 1–30 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Käppeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J. Comput. Phys. 259, 199–219 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Käppeli, R., Mishra, S.: A well-balanced finite volume scheme for the Euler equations with gravitation. The exact preservation of hydrostatic equilibrium with arbitrary entropy stratification. Astron. Astrophys. 587, A94 (2016)

    Google Scholar 

  22. Klingenberg, C., Puppo, G., Semplice, M.: Arbitrary order finite volume well-balanced schemes for the Euler equations with gravity. SIAM J. Sci. Comput. 41(2), A695–A721 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    MathSciNet  MATH  Google Scholar 

  24. Li, G., Xing, Y.: High order finite volume WENO schemes for the Euler equations under gravitational fields. J. Comput. Phys. 316, 145–163 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Li, G., Xing, Y.: Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields. Comput. Math. Appl. 75, 2071–2085 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Li, P., Don, W.S., Wang, C., Gao, Z.: High order positivity- and bound-preserving hybrid compact-WENO finite difference scheme for the compressible Euler equations. J. Sci. Comput. 74, 640–666 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Li, P., Gao, Z.: Simple high order well-balanced finite difference WENO schemes for the Euler equations under gravitational fields. J. Comput. Phys. 437, 110341 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Li, P., Wang, B.-S., Don, W.S.: Sensitivity parameter-independent well-balanced finite volume WENO scheme for the Euler equations under gravitational fields. J. Sci. Comput. 88, 47 (2021)

    MathSciNet  MATH  Google Scholar 

  29. Liu, H., Qiu, J.: Finite difference Hermite WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 63(2), 548–572 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    MathSciNet  MATH  Google Scholar 

  31. Luo, X., Wu, S.-P.: An improved WENO-Z+ scheme for solving hyperbolic conservation laws. J. Comput. Phys. 445, 110608 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Parésa, C., Parés-Pulidob, C.: Well-balanced high-order finite difference methods for systems of balance laws. J. Comput. Phys. 425, 109880 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Sedov, L.I.: Similarity and Dimensional Methods in Mechanics. Academic Press, New York (1959)

    MATH  Google Scholar 

  34. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  35. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Google Scholar 

  36. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes. Acta Numer. 29, 701–762 (2020)

    MathSciNet  Google Scholar 

  37. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    MathSciNet  MATH  Google Scholar 

  38. Wang, B.-S., Don, W.S.: Affine-invariant WENO weights and operator. Appl. Numer. Math. 181, 630–646 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Wang, B.-S., Don, W.S., Garg, N.K., Kurganov, A.: Fifth-order A-WENO finite difference schemes based on a new adaptive diffusion central numerical flux. SIAM J. Sci. Comput. 42, A3932–A3956 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Wang, B.-S., Li, P., Gao, Z., Don, W.S.: An improved fifth order alternative WENO-Z finite difference scheme for hyperbolic conservation laws. J. Comput. Phys. 374, 469–477 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Wang, Z., Zhu, J., Tian, L., Zhao, N.: A low dissipation finite difference nested multi-resolution WENO scheme for Euler/Navier-Stokes equations. J. Comput. Phys. 429, 110006 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Wang, Z., Zhu, J., Yang, Y., Zhao, N.: A new fifth-order alternative finite difference multi-resolution WENO scheme for solving compressible flow. Comput. Methods Appl. Mech. Eng. 382, 113853 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Wang, Z., Zhu, J., Zhao, N.: A new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water equations. Comput. Math. Appl. 80, 1387–1404 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    MathSciNet  MATH  Google Scholar 

  45. Xing, Y., Shu, C.-W.: High order well-balanced WENO scheme for the gas dynamics equations under gravitational fields. J. Sci. Comput. 54, 645–662 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Yee, H.C., Sandham, N.D., Djomehri, M.J.: Low dissipative high order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, S., Jiang, S., Shu, C.-W.: Development of nonlinear weighted compact schemes with increasingly higher order accuracy. J. Comput. Phys. 227, 7294–7321 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, X.X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Zhao, Z., Zhu, J., Chen, Y., Qiu, J.: A new hybrid WENO scheme for hyperbolic conservation laws. Comput. Fluids 179, 422–436 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Zhao, Z., Zhang, Y.-T., Qiu, J.: A modified fifth order finite difference Hermite WENO scheme for hyperbolic conservation laws. J. Sci. Comput. 85(2), 29 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO scheme with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. J. Comput. Phys. 392, 19–33 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Zhu, J., Shu, C.-W.: A new type of third-order finite volume multi-resolution WENO schemes on tetrahedral meshes. J. Comput. Phys. 406, 109212 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Zhu, J., Shu, C.-W.: Convergence to steady-state solutions of the new type of high-order multi-resolution WENO schemes: a numerical study, Commun. Appl. Math. Comput. 2, 429–460 (2020)

    MathSciNet  MATH  Google Scholar 

  55. Zingale, M., Dursi, L.J., ZuHone, J., Calder, A.C., Fryxell, B., Plewa, T., Truran, J.W., Caceres, A., Olson, K., Ricker, P.M., Riley, K., Rosner, R., Siegel, A., Timmes, F.X., Vladimirova, N.: Mapping initial hydrostatic models in Godunov codes. Astrophys. J. Suppl. Ser. 143, 539–565 (2002)

    Google Scholar 

Download references

Acknowledgements

We thank the comments and suggestions given by the anonymous reviewers that have greatly improved the manuscript.

Funding

This work is supported by the Natural Science Foundation of Hebei Province (A2020210047) and the National Natural Science Foundation of China (11801383). The author (Don) would like to thank the Ocean University of China for supporting this work with startup funding (201712011).

Author information

Authors and Affiliations

Authors

Contributions

PL: Conceptualization, Formal analysis, Investigation, Methodology, Writing, Funding acquisition. TL: Formal analysis, Investigation, Methodology, Writing. WSD: Conceptualization, Formal analysis, Investigation, Methodology, Writing, Funding acquisition. B-SW: Conceptualization, Formal analysis, Investigation, Methodology, Writing.

Corresponding author

Correspondence to Bao-Shan Wang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. There is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All the authors have contributed equally in this scholarly research and article.

Appendices

Appendix

Derivation of (66)

At the equilibrium state (57), one has the conservative variables \({{\textbf{Q}}}= (\rho ^e,0,{P^e}/{(\gamma -1)})^T\). The left and right eigenvectors of the Jacobian of the flux are

$$\begin{aligned} {\widetilde{{\textbf{L}}}}_{i+\frac{1}{2}} = \lambda _{i+\frac{1}{2}} \left( \begin{array}{rrr} 0 &{} -{\tilde{c}}_{i+\frac{1}{2}} &{} (\gamma -1) \\ 2\,{\tilde{c}}_{i+\frac{1}{2}}^2 &{} 0 &{} -2\,(\gamma -1) \\ 0 &{} {\tilde{c}}_{i+\frac{1}{2}} &{} (\gamma -1) \\ \end{array} \right) ,\quad {\widetilde{{\textbf{R}}}}_{i+\frac{1}{2}} = \left( \begin{array}{rrr} 1 &{} 1 &{} 1 \\[6pt] -{\tilde{c}}_{i+\frac{1}{2}} &{} 0 &{} {\tilde{c}}_{i+\frac{1}{2}} \\[6pt] {\widetilde{H}}_{i+\frac{1}{2}} &{} 0 &{} {\widetilde{H}}_{i+\frac{1}{2}} \\ \end{array} \right) , \end{aligned}$$

with \( \lambda _{i+\frac{1}{2}} = \left( 2{\tilde{c}}^2_{i+\frac{1}{2}}\right) ^{-1} \).

Firstly, \({{\textbf{Q}}}_{i+\ell }\) are projected into the characteristic fields through the Roe-averaged left eigenvectors \({\widetilde{{\textbf{L}}}}_{i+\frac{1}{2}}\)

$$\begin{aligned} {\widetilde{{{\textbf{Q}}}}}_{i+\ell }= {\widetilde{{\textbf{L}}}}_{i+\frac{1}{2}}{{\textbf{Q}}}_{i+\ell } = \left( \begin{array}{r} \lambda _{i+\frac{1}{2}}P^e_{i+\ell } \\ \rho ^e_{i+\ell } - 2\lambda _{i+\frac{1}{2}}P^e_{i+\ell } \\ \lambda _{i+\frac{1}{2}}P^e_{i+\ell } \end{array} \right) , \quad \ell =-2,\ldots ,3. \end{aligned}$$

Then the MR-AWENO interpolation procedure is used to compute the cell interface value \({\widetilde{{{\textbf{Q}}}}}_{i+\frac{1}{2}}^{-}\) as

$$\begin{aligned} \widetilde{{\textbf{Q}}}_{i+\frac{1}{2}}^{-} = {\mathcal {W}}_{i+\frac{1}{2}}^{-} [{\widetilde{{{\textbf{Q}}}}}] = \left( \begin{array}{c} {\mathcal {W}}_{i+\frac{1}{2}}^{-}\left[ \quad \quad ~~~~\lambda _{i+\frac{1}{2}}P^e\right] \\ {\mathcal {W}}_{i+\frac{1}{2}}^{-}\left[ \rho ^e - 2\lambda _{i+\frac{1}{2}}P^e\right] \\ {\mathcal {W}}_{i+\frac{1}{2}}^{-}\left[ \quad \quad ~~~~\lambda _{i+\frac{1}{2}}P^e\right] \end{array}\right) , \end{aligned}$$

Finally, the interpolated values \({\widetilde{{{\textbf{Q}}}}}_{i+\frac{1}{2}}^{-}\) are projected back into the physical space via the right eigenvectors \({\widetilde{{\textbf{R}}}}_{i+\frac{1}{2}}\),

$$\begin{aligned} {{\textbf{Q}}}_{i+\frac{1}{2}}^{-} = {\widetilde{{\textbf{R}}}}_{i+\frac{1}{2}}\widetilde{{\textbf{Q}}}_{i+\frac{1}{2}}^{-} = \left( \begin{array}{c} 2{\mathcal {W}}_{i+\frac{1}{2}}^{-}\left[ \,\lambda _{i+\frac{1}{2}}P^e\right] + {\mathcal {W}}_{i+\frac{1}{2}}^{-}\left[ \rho ^e - 2\lambda _{i+\frac{1}{2}}P^e\right] \\ 0 \\ 2{\widetilde{H}}_{i+\frac{1}{2}}{\mathcal {W}}_{i+\frac{1}{2}}^{-}\left[ \,\lambda _{i+\frac{1}{2}}P^e\right] \end{array}\right) . \end{aligned}$$

The right cell interface \({{\textbf{Q}}}_{i+\frac{1}{2}}^{+}\) can be computed by a similar procedure.

Using the definition of enthalpy H (30) and \(u=0\), one has \( {\widetilde{H}}_{i+\frac{1}{2}} = {\tilde{c}}_{i+\frac{1}{2}}^2/(\gamma - 1) \) and the derivation of (66) is completed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Li, T., Don, WS. et al. Scale-Invariant Multi-resolution Alternative WENO Scheme for the Euler Equations. J Sci Comput 94, 15 (2023). https://doi.org/10.1007/s10915-022-02065-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02065-6

Keywords

Navigation