Skip to main content
Log in

Machine Learning Moment Closure Models for the Radiative Transfer Equation III: Enforcing Hyperbolicity and Physical Characteristic Speeds

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This is the third paper in a series in which we develop machine learning (ML) moment closure models for the radiative transfer equation. In our previous work (Huang et al. in J Comput Phys 453:110941, 2022), we proposed an approach to learn the gradient of the unclosed high order moment, which performs much better than learning the moment itself and the conventional \(P_N\) closure. However, while the ML moment closure has better accuracy, it is not able to guarantee hyperbolicity and has issues with long time stability. In our second paper (Huang et al., in: Machine learning moment closure models for the radiative transfer equation II: enforcing global hyperbolicity in gradient based closures, 2021. arXiv:2105.14410), we identified a symmetrizer which leads to conditions that enforce that the gradient based ML closure is symmetrizable hyperbolic and stable over long time. The limitation of this approach is that in practice the highest moment can only be related to four, or fewer, lower moments. In this paper, we propose a new method to enforce the hyperbolicity of the ML closure model. Motivated by the observation that the coefficient matrix of the closure system is a lower Hessenberg matrix, we relate its eigenvalues to the roots of an associated polynomial. We design two new neural network architectures based on this relation. The ML closure model resulting from the first neural network is weakly hyperbolic and guarantees the physical characteristic speeds, i.e., the eigenvalues are bounded by the speed of light. The second model is strictly hyperbolic and does not guarantee the boundedness of the eigenvalues. Several benchmark tests including the Gaussian source problem and the two-material problem show the good accuracy, stability and generalizability of our hyperbolic ML closure model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Alldredge, G.W., Hauck, C.D., OLeary, D.P., Tits, A.L.: Adaptive change of basis in entropy-based moment closures for linear kinetic equations. J. Comput. Phys. 258, 489–508 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alldredge, G.W., Hauck, C.D., Tits, A.L.: High-order entropy-based closures for linear transport in slab geometry ii: a computational study of the optimization problem. SIAM J. Sci. Comput. 34(4), B361–B391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alldredge, G.W., Li, R., Li, W.: Approximating the \( {M}_2 \) method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic Relat. Models 9(2), 237 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amos, B., Xu, L., Kolter, J.Z.: Input convex neural networks. In: International Conference on Machine Learning, pp. 146–155. PMLR (2017)

  5. Bois, L., Franck, E., Navoret, L., Vigon, V.: A neural network closure for the Euler-Poisson system based on kinetic simulations. Preprint arXiv:2011.06242 (2020)

  6. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system in one-dimensional space. Commun. Math. Sci. 11(2), 547–571 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Commun. Pure Appl. Math. 67(3), 464–518 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, Z., Fan, Y., Li, R.: On hyperbolicity of 13-moment system. Kinetic Relat. Models 7(3), 415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chandrasekhar, S.: On the radiative equilibrium of a stellar atmosphere. Astrophys. J. 99, 180 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crockatt, M.M., Christlieb, A.J., Garrett, C.K., Hauck, C.D.: An arbitrary-order, fully implicit, hybrid kinetic solver for linear radiative transport using integral deferred correction. J. Comput. Phys. 346, 212–241 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crockatt, M.M., Christlieb, A.J., Garrett, C.K., Hauck, C.D.: Hybrid methods for radiation transport using diagonally implicit runge-kutta and space-time discontinuous galerkin time integration. J. Comput. Phys. 376, 455–477 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elouafi, M., Hadj, A.D.A.: A recursion formula for the characteristic polynomial of hessenberg matrices. Appl. Math. Comput. 208(1), 177–179 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Fan, Y., Li, R., Zheng, L.: A nonlinear hyperbolic model for radiative transfer equation in slab geometry. SIAM J. Appl. Math. 80(6), 2388–2419 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fan, Y., Li, R., Zheng, L.: A nonlinear moment model for radiative transfer equation in slab geometry. J. Comput. Phys. 404, 109128 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frank, M., Hauck, C.D., Olbrant, E.: Perturbed, entropy-based closure for radiative transfer. Preprint arXiv:1208.0772 (2012)

  17. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  18. Han, J., Jentzen, A., Weinan, E.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505–8510 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, J., Ma, C., Ma, Z., Weinan, E.: Uniformly accurate machine learning-based hydrodynamic models for kinetic equations. Proc. Natl. Acad. Sci. 116(44), 21983–21991 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hauck, C., McClarren, R.: Positive \({P_N}\) closures. SIAM J. Sci. Comput. 32(5), 2603–2626 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hauck, C.D.: High-order entropy-based closures for linear transport in slab geometry. Commun. Math. Sci. 9(1), 187–205 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  23. Huang, J., Cheng, Y., Christlieb, A.J., Roberts, L.F.: Machine learning moment closure models for the radiative transfer equation I: directly learning a gradient based closure. J. Comput. Phys. 453, 110941 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, J., Cheng, Y., Christlieb, A.J., Roberts, L.F., Yong, W.-A.: Machine learning moment closure models for the radiative transfer equation II: enforcing global hyperbolicity in gradient based closures. Preprint arXiv:2105.14410 (2021)

  25. Huang, J., Ma, Z., Zhou, Y., Yong, W.-A.: Learning thermodynamically stable and Galilean invariant partial differential equations for non-equilibrium flows. J. Non-Equilibrium Thermodyn. 46, 355–70 (2021)

    Article  Google Scholar 

  26. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

  27. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Klose, A.D., Netz, U., Beuthan, J., Hielscher, A.H.: Optical tomography using the time-independent equation of radiative transfer-part 1: forward model. J. Quant. Spectrosc. Radiat. Transf. 72(5), 691–713 (2002)

    Article  Google Scholar 

  29. Koch, R., Becker, R.: Evaluation of quadrature schemes for the discrete ordinates method. J. Quant. Spectrosc. Radiat. Transf. 84(4), 423–435 (2004)

    Article  Google Scholar 

  30. Laboure, V.M., McClarren, R.G., Hauck, C.D.: Implicit filtered \({P}_{N}\) for high-energy density thermal radiation transport using discontinuous galerkin finite elements. J. Comput. Phys. 321, 624–643 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Larsen, E., Morel, J.: Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes ii. J. Comput. Phys. 83(1) (1989)

  32. Levermore, C.: Relating eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31(2), 149–160 (1984)

    Article  Google Scholar 

  33. Levermore, C.D.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5), 1021–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, R., Li, W., Zheng, L.: Direct flux gradient approximation to close moment model for kinetic equations. Preprint arXiv:2102.07641 (2021)

  35. Ma, C., Zhu, B., Xu, X.-Q., Wang, W.: Machine learning surrogate models for Landau fluid closure. Phys. Plasmas 27(4), 042502 (2020)

    Article  Google Scholar 

  36. Maulik, R., Garland, N.A., Burby, J.W., Tang, X.-Z., Balaprakash, P.: Neural network representability of fully ionized plasma fluid model closures. Phys. Plasmas 27(7), 072106 (2020)

    Article  Google Scholar 

  37. McClarren, R.G., Hauck, C.D.: Robust and accurate filtered spherical harmonics expansions for radiative transfer. J. Comput. Phys. 229(16), 5597–5614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Murchikova, E., Abdikamalov, E., Urbatsch, T.: Analytic closures for M1 neutrino transport. Mon. Not. R. Astron. Soc. 469(2), 1725–1737 (2017)

    Article  Google Scholar 

  39. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. Preprint arXiv:1912.01703 (2019)

  40. Pomraning, G.C.: The Equations of Radiation Hydrodynamics. Pergamon Press, Oxford (1973)

    Google Scholar 

  41. Porteous, W.A., Laiu, M.P., Hauck, C.D.: Data-driven, structure-preserving approximations to entropy-based moment closures for kinetic equations. Preprint arXiv:2106.08973 (2021)

  42. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schotthöfer, S., Xiao, T., Frank, M., Hauck, C.D.: A structure-preserving surrogate model for the closure of the moment system of the Boltzmann equation using convex deep neural networks. Preprint arXiv:2106.09445 (2021)

  44. Scoggins, J.B., Han, J., Massot, M.: Machine learning moment closures for accurate and efficient simulation of polydisperse evaporating sprays. In: AIAA Scitech 2021 Forum, p. 1786 (2021)

  45. Serre, D.: Systems of Conservation Laws 1: Hyperbolicity, Entropies, Shock Waves. Cambridge University Press (1999)

  46. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  47. Szeg, G.: Orthogonal Polynomials, vol. 23. American Mathematical Soc. (1939)

  48. Wang, L., Xu, X., Zhu, B., Ma, C., Lei, Y.-A.: Deep learning surrogate model for kinetic Landau-fluid closure with collision. AIP Adv. 10(7), 075108 (2020)

    Article  Google Scholar 

  49. Yong, W.-A.: Basic aspects of hyperbolic relaxation systems. In: Advances in the Theory of Shock Waves, pp. 259–305. Springer (2001)

  50. Zhu, Y., Hong, L., Yang, Z., Yong, W.-A.: Conservation-dissipation formalism of irreversible thermodynamics. J. Non-Equilib. Thermodyn. 40(2), 67–74 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Michael M. Crockatt in Sandia National Laboratories for providing numerical solver for the radiative transfer equation. We acknowledge the High Performance Computing Center (HPCC) at Michigan State University for providing computational resources that have contributed to the research results reported within this paper. JH would like to thank Professor Wen-An Yong in Tsinghua University for many fruitful discussions. This work has been assigned a document release number LA-UR-21-28626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Huang.

Ethics declarations

Competing interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yingda Cheng: Research is supported by NSF Grants DMS-2011838 and AST-2008004.

Andrew J. Christlieb: Research is supported by AFOSR Grants FA9550-19-1-0281 and FA9550-17-1-0394; NSF Grants DMS-1912183 and AST-2008004; and DoE Grant DE-SC0017955.

Luke F. Roberts: Research is supported by NSF Grant AST-2008004; and DoE Grant DE-SC0017955.

Appendix A: Collections of Proofs

Appendix A: Collections of Proofs

In this appendix, we collect some lemma and proofs. We start with a lemma which characterize the eigenspace of unreduced lower Hessenberg matrix.

Lemma A.1

For an unreduced lower Hessenberg matrix \(H=(h_{ij})_{n\times n}\), the geometric multiplicity of any eigenvalue \(\lambda \) is 1 and the corresponding eigenvector is \((q_0(\lambda ), q_1(\lambda ), \ldots , q_{n-1}(\lambda ))^T\). Here \(\{q_i\}_{0\le i\le n-1}\) is the associated polynomial sequence defined in (2.1).

Proof

By Definition 2.1, we have that \(h_{ij}=0\) for \(j>i+1\) and \(h_{i,i+1}\ne 0\) for \(i=1,\ldots ,n-1\). Let \(r=(r_1,r_2,\ldots ,r_n)\) be an eigenvector associated with \(\lambda \). We write \(Ar = \lambda r\) as an equivalent component-wise formulation:

$$\begin{aligned} \sum _{j=1}^i h_{ij} r_j + h_{i,i+1} r_{i+1} = \lambda r_i, \quad i = 1,\ldots ,n-1, \end{aligned}$$
(A.1)

and

$$\begin{aligned} \sum _{j=1}^n h_{nj} r_j = \lambda r_n. \end{aligned}$$
(A.2)

Here we used the fact that \(h_{ij}=0\) for \(j>i+1\). Since \(h_{i,i+1}\ne 0\) for \(i=1,\ldots ,n-1\), (A.1) is equivalent to

$$\begin{aligned} r_{i+1} = \frac{1}{h_{i,i+1}} \left( \lambda r_i - \sum _{j=1}^i h_{ij} r_j\right) , \quad i = 1,\ldots ,n-1 \end{aligned}$$
(A.3)

From (A.3), we deduce that \(r_1\ne 0\), otherwise \(r_2=\cdots =r_n=0\). Moreover, \(r_i\) for \(i = 2,\ldots ,n\) are uniquely determined by \(r_1\). Therefore, the geometric multiplicity of \(\lambda \) is 1. Moreover, without loss of generality, we take \(r_1=1\). In this case, r is exactly the same with \((q_0(\lambda ),q_1(\lambda ),\ldots ,q_{n-1}(\lambda ))^T\). Here \(\{q_i\}_{0\le i\le n-1}\) is the associated polynomial sequence defined in (2.1). \(\square \)

Lemma A.2

Let \(H = (h_{ij})_{n\times n}\) be an unreduced lower Hessenberg matrix and \(\{q_i\}_{0\le i\le n}\) is the associated polynomial sequence with H. If \(\lambda \) is an eigenvalue of H, then \(\lambda \) is a root of \(q_n\).

Proof

From Lemma A.1, we have the geometric multiplicity of \(\lambda \) is 1 and the corresponding eigenvector \(\varvec{q}_{n-1}(\lambda ) = (q_0(\lambda ),q_1(\lambda ),\ldots ,q_{n-1}(\lambda ))^T\), i.e. \(H \varvec{q}_{n-1}(\lambda ) = \lambda \varvec{q}_{n-1}(\lambda )\). Plugging \(\lambda \) into (2.2), we immediately have \(q_n(\lambda )=0\), i.e., \(\lambda \) is a root of \(q_n\). \(\square \)

1.1 A.1: Proof of Theorem 2.4

Proof

We start by proving that condition 1 and condition 2 are equivalent. First, it is easy to see that condition 2 implies condition 1. We only need to prove that condition 1 implies condition 2. Since A is real diagonalizable, all the eigenvalues of A are real. Moreover, for any eigenvalue of A, the geometric multiplicity is equal to its algebraic multiplicity. By Lemma A.1, the geometric multiplicity of any eigenvalue of an unreduced lower Hessenberg matrix is 1. Therefore, any eigenvalue of A has algebraic multiplicity of 1, i.e. all the eigenvalues of A are distinct.

Next, we prove that the equivalence of condition 2 and condition 3. It is easy to see that, condition 3 implies condition 2 from Theorem 2.3, and condition 2 implies condition 3 from Lemma A.2. This completes the proof. \(\square \)

1.2 A.2: Proof of Lemma 3.3

Proof

We start from the definition of Legendre polynomials by the generating function:

$$\begin{aligned} \frac{1}{\sqrt{1-2tx+t^2}} = \sum _{n=0}^\infty P_n(x) t^n. \end{aligned}$$
(A.4)

Introduce the variable s such that

$$\begin{aligned} 1 - ts = \sqrt{1-2tx + t^2}, \end{aligned}$$
(A.5)

which is equivalent to

$$\begin{aligned} x = \frac{1+t^2 - (1-ts)^2}{2t} = s + \frac{t}{2}(1-s^2). \end{aligned}$$
(A.6)

Therefore, we have

$$\begin{aligned}{} & {} \sum _{n=0}^\infty t^n \int _{-1}^1 x^m P_n(x) dx {\mathop {=}\limits ^{\text {(A.4)}}} \int _{-1}^1 \frac{x^m dx}{\sqrt{1-2tx+t^2}}\nonumber \\{} & {} \quad {\mathop {=}\limits ^{\text {(A.6)}}} \int _{-1}^1 \frac{x^m (1-ts) ds}{\sqrt{1-2tx+t^2}} {\mathop {=}\limits ^{\text {(A.5)- (A.6)}}} \int _{-1}^1 \left( s + \frac{t}{2}(1-s^2)\right) ^m ds. \end{aligned}$$
(A.7)

Define

$$\begin{aligned} a_{m,n}:= \int _{-1}^1 x^m P_n(x) dx. \end{aligned}$$
(A.8)

By comparing the coefficients of \(t^n\) on both sides of (A.7), we find that \(a_{m,n} = 0\) if \(n>m\) or m, n has different parity. For \(n = m - 2k\) for some integer \(k\ge 0\), we have

$$\begin{aligned} a_{m,m-2k} = 2^{2k-m}\left( {\begin{array}{c}m\\ 2k\end{array}}\right) \int _{-1}^1 s^{2k} (1-s^2)^{m-2k} ds = 2^{2k-m}\left( {\begin{array}{c}m\\ 2k\end{array}}\right) \int _{0}^1 2 s^{2k} (1-s^2)^{m-2k} ds\nonumber \\ \end{aligned}$$
(A.9)

By introducing the variable \(\tau = s^2\) or equivalently \(s = \tau ^{\frac{1}{2}}\), we have

$$\begin{aligned} \begin{aligned} a_{m,m-2k}&= 2^{2k-m}\left( {\begin{array}{c}m\\ 2k\end{array}}\right) \int _{0}^1 2 s^{2k} (1-s^2)^{m-2k} ds \\&= 2^{2k-m}\left( {\begin{array}{c}m\\ 2k\end{array}}\right) \int _{0}^1 2 \tau ^{k} (1-\tau )^{m-2k} \frac{1}{2}\tau ^{-\frac{1}{2}} d\tau \\&= 2^{2k-m}\left( {\begin{array}{c}m\\ 2k\end{array}}\right) \int _{0}^1 \tau ^{k-\frac{1}{2}} (1-\tau )^{m-2k} d\tau \\&= 2^{2k-m}\left( {\begin{array}{c}m\\ 2k\end{array}}\right) \frac{\Gamma (k+\frac{1}{2})\Gamma (m-2k+1)}{\Gamma (m-k+\frac{3}{2})} \\&= \frac{m!}{2^{k-1}k!(2m-2k+1)!!} \end{aligned} \end{aligned}$$
(A.10)

where in the fourth equality we used the relation between the gamma function and the beta function:

$$\begin{aligned} B(x,y):= \int _0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma (x)\Gamma (y)}{\Gamma (x+y)}, \end{aligned}$$
(A.11)

and in the last equality we used the properties of the gamma function: for any integer \(n\ge 0\)

$$\begin{aligned} \Gamma (n) = (n-1)!, \quad \Gamma (n+\frac{1}{2}) = \frac{(2n-1)!!}{2^n}\sqrt{\pi }. \end{aligned}$$
(A.12)

Lastly, using the orthogonality relation \(\int _{-1}^1 P_m(x)P_n(x) = \frac{2}{2m+1}\delta _{m,n}\), we have for any integer \(m\ge 0\),

$$\begin{aligned} x^m = \sum _{k=0}^{\lfloor m/2\rfloor } \left( \frac{2m-4k+1}{2}\right) a_{m,m-2k} P_{m-2k}(x) = \sum _{k=0}^{\lfloor m/2\rfloor }\frac{m!(2m-4k+1)}{2^k k!(2m-2k+1)!!}P_{m-2k}(x)\nonumber \\ \end{aligned}$$
(A.13)

This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Cheng, Y., Christlieb, A.J. et al. Machine Learning Moment Closure Models for the Radiative Transfer Equation III: Enforcing Hyperbolicity and Physical Characteristic Speeds. J Sci Comput 94, 7 (2023). https://doi.org/10.1007/s10915-022-02056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02056-7

Keywords

Navigation