Skip to main content
Log in

A Fully-Decoupled Artificial Compressible Crank–Nicolson–Leapfrog Time Stepping Scheme for the Phase Field Model of Two-Phase Incompressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider efficient numerical approximations for the phase field model of two-phase incompressible flows. To develop easy-to-implement time stepping scheme, we introduce two types of nonlocal auxiliary variables to achieve highly efficient and fully-decoupled scheme based on the Crank–Nicolson–Leapfrog (CNLF) formula and artificial compression method. We prove that the scheme is linear and unconditionally energy stable. Ample numerical experiments are performed to demonstrate the accuracy, stability and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availibility

The datasets generated during the current study are available from the corresponding author upon reasonable request.

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. In: Annual Review of Fluid Mechanics, vol. 30, pp. 139–165. Palo Alto, CA (1998)

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (2002)

  3. Bresch, D., Koko, J.: Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier–Stokes fluids. Int. J. Appl. Math. Comput. Sci. 16, 419–429 (2006)

    MathSciNet  MATH  Google Scholar 

  4. Burman, E., Fernández, M.A.: Stabilized explicit coupling for fluid-structure interaction using Nitsche’s method. C. R. Math. Acad. Sci. Paris 345, 467–472 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Methods Appl. Mech. Eng. 194, 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40, A3982–A4006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. DeCaria, V., Layton, W., McLaughlin, M.: A conservative, second order, unconditionally stable artificial compression method. Comput. Methods Appl. Mech. Eng. 325, 733–747 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gurtin, M.E., Polignone, D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6(6), 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, D.Z., Jiang, N.: A second order, linear, unconditionally stable, Crank–Nicolson-Leapfrog scheme for phase field models of two-phase incompressible flows. Appl. Math. Lett. 108, 106521 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, D.Z., Wang, X.M.: A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn–Hilliard–Navier–Stokes equation. J. Comput. Phys. 290, 139–156 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Y.N.: Two-level methods based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 41, 1263–1285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Y.N., Sun, W.W.: Stability and convergence of the Crank-Nicolson/Adams–Bashforth scheme for the time-dependent Navier–Stokes equations. SIAM J. Numer. Anal. 45, 837–869 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, Y.N., Sun, W.W.: Stabilized finite element methods based on Crank–Nicolson extrapolation scheme for the time-dependent Navier–Stokes equations. Math. Comput. 76, 115–136 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hecht, F.: New development in Freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, F., Shen, J., Yang, Z.: A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J. Sci. Comput. 42(4), A2514–A2536 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hurl, N., Layton, W., Li, Y., Trenchea, C.: Stability analysis of the Crank–Nicolson-Leapfrog method with the Robert–Asselin–Williams time filter. BIT Numer. Math. 54, 1009–1021 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Y.Q., Li, J.C., Lin, Q.: Superconvergence analysis for time-dependent Maxwells equations in metamaterials. Numer. Methods PDEs 28, 1794–1816 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, Y.Q., Li, J.C., Yang, W.: Modeling backward wave propagation in metamaterials by the finite element time-domain method. SIAM J. Sci. Comput. 35, B248–B274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, Y.Q., Li, J.C., Yang, W.: Theoretical and numerical analysis of a non-local dispersion model for light interaction with metallic nanostructures. Comput. Math. Appl. 72, 921–932 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, M., Zhang, Z., Zhao, J.: Improving the accuracy and consistency of the scalar auxiliary variable (SAV) method with relaxation. J. Comput. Phys. 456, 110954 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, N., Kubacki, M., Layton, W., Trenchea, C.: A Crank–Nicolson Leapfrog stabilization: unconditional stability and two applications. J. Comput. Appl. Math. 281, 263–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kubacki, M.: Uncoupling evolutionary groundwater–surface water flows using the Crank–Nicolson Leapfrog method. Numer. Methods PDEs 29, 1192–1216 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J.C.: Numerical convergence and physical fidelity analysis for Maxwells equations in metamaterials. Comput. Methods Appl. Mech. Engrg. 198, 3161–3172 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J.C., Huang, Y.Q., Lin, Y.P.: Developing finite element methods for Maxwells equations in a Cole–Cole dispersive medium. SIAM J. Sci. Comput. 33, 3153–3174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J.C., Waters, J.W., Machorro, E.A.: An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwells equations in metamaterials. Comput. Methods Appl. Mech. Engrg. 223–224, 43–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D 179(34), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qian, L., Feng, X., He, Y.: Crank–Nicolson Leap-Frog time stepping decoupled scheme for the fluid–fluid interaction problems. J. Sci. Comput. 84, 4 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qian, L., Feng, X., He, Y.: The characteristic finite difference streamline diffusion method for convection-dominated diffusion problems. Appl. Math. Model. 36, 561–572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J.: On error estimates of the projection methods for the Navier–Stokes equations: second-order schemes. Math. Comput. 65, 1039–1065 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J., Wang, C., Wang, X.M., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Xue, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tang, Q., Huang, Y.: Stability and convergence analysis of a Crank–Nicolson leap-frog scheme for the unsteady incompressible Navier–Stokes equations. Appl. Numer. Math. 124, 110–129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge–Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    Article  MATH  Google Scholar 

  35. Yang, X.: Numerical approximations of the Navier–Stokes equation coupled with volume-conserved multi-phase-field vesicles system: fully-decoupled, linear, unconditionally energy stable and second-order time-accurate numerical scheme. Comput. Methods Appl. Mech. Eng. 375, 113600 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, X.: A new efficient fully-decoupled and second-order time-accurate scheme for Cahn–Hilliard phase-field model of three-phase incompressible flow. Comput. Methods Appl. Mech. Eng. 376, 113589 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y., Shen, J.: A generalized SAV approach with relaxation for dissipative systems. arXiv:2201.12587 (2022)

Download references

Funding

This work is in part supported by the NSF of China (No. 11861054), Natural Science Foundation of Guangxi, China (No. 2020GXNSFAA297223), the Science and technology project of Guangxi, China (No. Guike AD21220114), State Key Laboratory of High Temperature Gas Dynamics (No.2021KF02), the NSF of China (Nos. 12071406, U19A2079), Natural Science Foundation of Xinjiang (NO.2021D01C114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyang Qiao.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is in part supported by the NSF of China (No. 11861054), Natural Science Foundation of Guangxi, China (No. 2020GXNSFAA297223), the Science and technology project of Guangxi, China (No. Guike AD21220114), State Key Laboratory of High Temperature Gas Dynamics (No.2021KF02), the NSF of China (Nos. 12071406, U19A2079), Natural Science Foundation of Xinjiang (No. 2021D01C114).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Wu, C., Cai, H. et al. A Fully-Decoupled Artificial Compressible Crank–Nicolson–Leapfrog Time Stepping Scheme for the Phase Field Model of Two-Phase Incompressible Flows. J Sci Comput 94, 50 (2023). https://doi.org/10.1007/s10915-022-02048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02048-7

Keywords

Mathematics Subject Classification

Navigation