Skip to main content
Log in

Optimal Control in a Bounded Domain for Wave Propagating in the Whole Space: Coupling Through Boundary Integral Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is concerned with an optimal control problem in a bounded-domain \(\varOmega _0\) under the constraint of a wave equation in the whole space. The problem is regularized and then reformulated as an initial-boundary value problem of the wave equation in a bounded domain \(\varOmega \supset {\overline{\varOmega }}_0\) coupled with a set of boundary integral equations on \(\partial \varOmega \) taking account of wave propagation through the boundary. The well-posedness and stability of the reformulated problem are proved. A fully discrete finite element method is proposed for solving the reformulated problem. In particular, the wave equation in the bounded domain is discretized by an averaged central difference method in time, and the boundary integral equations are discretized in time by using the convolution quadrature generated by the second-order backward difference formula. The finite and boundary element methods are used for spatial discretization of the wave equation and the boundary integral equations, respectively. The stability and convergence of the numerical method are also proved. Finally, the spatial and temporal convergence rates are validated numerically in 2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Material

Parts of the data and materials are available upon reasonable request.

References

  1. Abboud, T., Joly, P., Rodríguez, J., Terrasse, I.: Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains. J. Comput. Phys. 230, 5877–5907 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banjai, L., Lubich, C., Sayas, F.-J.: Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129, 611–646 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banks, H.T., Smith, R.C., Wang, Y.: Smart Material Structures: Modeling, Estimation and Control. Recherches en mathématiques appliquées, Wiley (1996)

  4. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bermúdez, A., Gamallo, P., Rodríguez, R.: Finite element methods in local active control of sound. SIAM J. Control Optim. 43, 437–465 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bucci, F.: A Dirichlet boundary control problem for the strongly damped wave equation. SIAM J. Control Optim. 30, 1092–1100 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Z.: Convergence of the time-domain perfectly matched layer method for acoustic scattering problems. Int. J. Numer. Anal. Modeling 6, 124–146 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Chen, Z., Wu, H.: An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures. SIAM J. Numer. Anal. 41, 799–828 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Wu, X.: Long-time stability and convergence of the uniaxial perfectly matched layer method for time-domain acoustic scattering problems. SIAM J. Numer. Anal. 50, 2632–2655 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chertock, A., Herty, M., Kurganov, A.: An Eulerian-Lagrangian method for optimization problems governed by multidimensional nonlinear hyperbolic PDEs. Comput. Optim. Appl. 59, 689–724 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eberle, S.: The elastic wave equation and the stable numerical coupling of its interior and exterior problems. ZAMM Z. Angew. Math. Mech. 98(7), 1261–1283 (2018)

    Article  MathSciNet  Google Scholar 

  12. Engquist, B., Majda, A.: Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. 74, 1765–1766 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eriksson, S., Nordström, J.: Exact non-reflecting boundary conditions revisited: well-posedness and stability. Found. Comput. Math. 17, 957–986 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gerdts, M., Greif, G., Pesch, H.J.: Numerical optimal control of the wave equation: Optimal boundary control of a string to rest in finite time. Math. Comput. Simul. 79, 1020–1032 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Givoli, D.: Non-reflecting boundary conditions: A review. J. Comput. Phys. 94, 1–29 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gugat, M., Grimm, V.: Optimal boundary control of the wave equation with pointwise control constraints. Comput. Optim. Appl. 49, 123–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gugat, M., Keimer, A., Leugering, G.: Optimal distributed control of the wave equation subject to state constraints. ZAMM Z. Angew. Math. Mech. 89, 420–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gugat, M., Sokolowski, J.: A note on the approximation of Dirichlet boundary control problems for the wave equation on curved domains. Appl. Anal. 92, 2200–2214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numerica 8, 47–106 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hagstrom, T.: New results on absorbing layers and radiation boundary conditions. In: Ainsworth, M., et al. (eds.) Topics in Computational Wave Propagation, pp. 1–42. Springer-Verlag, New York (2003)

    Google Scholar 

  21. Herty, M., Kurganov, A., Kurochkin, D.: Numerical method for optimal control problems governed by nonlinear hyperbolic systems of PDEs. Commun. Math. Sci. 13, 15–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Springer, New York (2009)

    MATH  Google Scholar 

  23. Ignat, L., Zuazua, E.: Convergence of a two-grid algorithm for the control of the wave equation. J. European Math. Soc. 11, 351–391 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiang, X., Zheng, W.: Adaptive perfectly matched layer method for multiple scattering problems. Comput. Methods Appl. Mech. Engrg. 201–204, 42–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kovács, B., Lubich, C.: Stable and convergent fully discrete interior-exterior coupling of Maxwell’s equations. Numer. Math. 137, 91–117 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kröner, A.: Adaptive finite element methods for optimal control of second order hyperbolic equations. Comput. Methods Appl. Math. 11, 214–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kröner, A., Kunisch, K.: A minimum effort optimal control problem for the wave equation. Comput. Optim. Appl. 57, 241–270 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kröner, A., Kunisch, K., Vexler, B.: Semismooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49, 830–858 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kunisch, K., Reiterer, S.H.: A Gautschi time-stepping approach to optimal control of the wave equation. Appl. Numer. Math. 90, 55–76 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kunisch, K., Trautmann, P., Vexler, B.: Optimal control of the undamped linear wave equation with measure valued controls. SIAM J. Control Optim. 54(3), 1212–1244 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kunisch, K., Wachsmuth, D.: On time optimal control of the wave equation and its numerical realization as parametric optimization problem. SIAM J. Control Optim. 51, 1232–1262 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kunisch, K., Wachsmuth, D.: On time optimal control of the wave equation, its regularization and optimality system. ESAIM Control Optim. Calc. Var. 19, 317–336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Laliena, A.R., Sayas, F.-J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112, 637–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lasiecka, I., Sokolowski, J.: Sensitivity analysis of optimal control problems for wave equations. SIAM J. Control Optim. 29, 1128–1149 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, B., Liu, J., Xiao, M.: A fast and stable preconditioned iterative method for optimal control problem of wave equations. SIAM J. Sci. Comput. 37, A2508–A2534 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, New York (1971)

    Book  MATH  Google Scholar 

  37. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52(2), 129–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their BIEs. Numer. Math. 67, 365–389 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44(3), 503–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  41. Mahapatra, D.R., Gopalakrishnan, S., Balachandran, B.: Active feedback control of multiple waves in helicopter gearbox support struts. Smart Mater. Struct. 10, 1046–1058 (2001)

    Article  Google Scholar 

  42. Melenk, J.M., Rieder, A.: Runge-Kutta convolution quadrature and FEM-BEM coupling for the time-dependent linear schrödinger equation. J. Integr. Equat. Appl. 29, 189–250 (2017)

    Article  MATH  Google Scholar 

  43. Nedelec, J.C.: Integral equations with non-integrable kernels. Integral Equ. Oper. Theory 4, 563–572 (1982)

    MATH  Google Scholar 

  44. Pan, X., Hansen, C.H.: Active vibration control of waves in simple structures with multiple error sensors. J. Acoust. Soc. Amer. 103, 1673–1676 (1998)

    Article  Google Scholar 

  45. Privat, Y., Trélat, E., Zuazua, E.: Optimal sensor location for wave and Schrödinger equations. In: Proceedings of the Conference in Hyperbolic Problems: theory, Numerics and Applications, (2013). https://hal.archives-ouvertes.fr/hal-00758908/file/PTZ_hyp2012.pdf

  46. Rodellar, J., Barbat, A.H., Casciati, F.: Advances in Structural Control. CIMNE, Barcelona (1999)

  47. Sánchez-Vizuet, T., Sayas, F.-J.: Symmetric boundary-finite element discretization of time dependent acoustic scattering by elastic obstacles with piezoelectric behavior. J. Sci. Comput. 70, 1290–1315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sayas, F.-J.: Retarded Potentials and Time Domain Boundary Integral Equations: A Road Map. Springer-Verlag, Berlin/Heidelberg (2016)

    Book  MATH  Google Scholar 

  49. Sogge, C.D.: Lectures on Nonlinear Wave Equations. International Press, Somerville, Massachusetts (1995)

    MATH  Google Scholar 

  50. Trautmann, P., Vexler, B., Zlotnik, A.: Finite element error analysis for measure-valued optimal control problems governed by a 1D wave equation with variable coefficients. Math. Control Relat. Fields 8(2), 411–449 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yariv, A.: Optical Waves in Crystals: Propagation & Control of Laser Radiation. Wiley-Interscience, New York (1983)

    Google Scholar 

  52. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47, 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The research of W. Gong was supported in part by the Key Research Program of the Chinese Academy of Sciences under Grant XDPB11, the National Key Basic Research Program (No. 2018YFB0704304) and the National Natural Science Foundation of China under Grant 11671391. The work of Buyang Li was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (GRF Project No. PolyU15300817), and an internal grant at The Hong Kong Polytechnic University (PolyU Project ID: P0031035, Work Programme: ZZKQ). The research of H. Yang was supported in part by the key research projects of general universities in Guangdong Province (Grant No. 2019KZDXM034), and the basic research and applied basic research projects in Guangdong Province (Projects of Guangdong, Hong Kong and Macao Center for Applied Mathematics, Grant No. 2020B1515310018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Li, B. & Yang, H. Optimal Control in a Bounded Domain for Wave Propagating in the Whole Space: Coupling Through Boundary Integral Equations. J Sci Comput 92, 91 (2022). https://doi.org/10.1007/s10915-022-01953-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01953-1

Keywords

Navigation