Skip to main content
Log in

Energy Plus Maximum Bound Preserving Runge–Kutta Methods for the Allen–Cahn Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

It is difficult to design high order numerical schemes which could preserve both the maximum bound property (MBP) and energy dissipation law for certain phase field equations. Strong stability preserving (SSP) Runge–Kutta methods have been developed for numerical solution of hyperbolic partial differential equations in the past few decades, where strong stability means the non-increasing of the maximum bound of the underlying solutions. However, existing framework of SSP RK methods can not handle nonlinear stabilities like energy dissipation law. The aim of this work is to extend this SSP theory to deal with the nonlinear phase field equation of the Allen–Cahn type which typically satisfies both maximum bound preserving (MBP) and energy dissipation law. More precisely, for Runge–Kutta time discretizations, we first derive a general necessary and sufficient condition under which MBP is satisfied; and we further provide a necessary condition under which the MBP scheme satisfies energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)

    Article  MathSciNet  Google Scholar 

  2. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge-kutta and Multistep Time Discretizations. World Scientific Press, Singapore (2011)

    Book  Google Scholar 

  3. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge-Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  Google Scholar 

  4. Kraaijevanger, J.F.B.M.: Contractivity of Runge-Kutta methods. BIT 31, 482–528 (1991)

    Article  MathSciNet  Google Scholar 

  5. Ruuth, S.J., Spiteri, R.J.: Two barriers on strong-stability-preserving time discretization methods. J. Sci. Comput. 17, 211–220 (2002)

    Article  MathSciNet  Google Scholar 

  6. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  7. Allen, S.M., Cahn, J.W.: A microscopic theory for anti-phase boundary motion and its application to anti-phase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  8. Eyre, D.J.: An unconditionally stable one-step scheme for gradient systems. unpublished, see http://www.math.utah.edu/eyre/research/methods/stable.ps

  9. Gomez, H., Hughes, T.: Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 230, 5310–5327 (2011)

    Article  MathSciNet  Google Scholar 

  10. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comp. 87, 1859–1885 (2018)

    Article  MathSciNet  Google Scholar 

  11. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  12. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  Google Scholar 

  13. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. arXiv preprint: arXiv:2005.11465, to appear in SIAM Review (2020)

  14. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equations. SIAM J. Numer. Anal. 57, 875–898 (2019)

    Article  MathSciNet  Google Scholar 

  15. Li, B., Yang, J., Zhou, Z.: Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM J. Sci. Comput. 42(6), 3957–3978 (2020)

    Article  MathSciNet  Google Scholar 

  16. Stehlik, P., Volek, J.: Maximum principles for discrete and semidiscrete reaction-diffusion equation. Discrete Dyn. Nat. Soc. 2015, 1–13 (2015)

    Article  MathSciNet  Google Scholar 

  17. Fu, Z., Yang, J.: Energy-decreasing exponential time differencing runge-kutta methods for phase-field models. J. Comput. Phys. 454, 110943 (2022)

    Article  MathSciNet  Google Scholar 

  18. Shen, J., Tang, T., Jiang, Y.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Comm. Math. Sci. 14(6), 1517–1534 (2016)

    Article  MathSciNet  Google Scholar 

  19. Tang, T.: Revisit of semi-implicit schemes for phase-field equations. Anal. Theory Appl. 36(3), 235–242 (2020)

    Article  MathSciNet  Google Scholar 

  20. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 471–481 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  22. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, New Jersey, U.S (2003)

    Book  Google Scholar 

  23. Ferracina, L., Spijker, M.N.: Stepsize restrictions for the total-variation-diminishing property in general runge-kutta methods. SIAM J. Numer. Anal. 42(3), 1073–1093 (2004)

    Article  MathSciNet  Google Scholar 

  24. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    Article  MathSciNet  Google Scholar 

  25. Yang, J., Du, Q., Zhang, W.: Uniform \(l^p\) -bound of the Allen-Cahn equation and its numerical discretization. Int. J. Numer. Anal. Model. 15(1–2), 213–227 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of J. Yang is supported by National Natural Science Foundation of China (NSFC) Grant No. 11871264, Natural Science Foundation of Guangdong Province (2018A0303130123), the Shenzhen Natural Science Fund (RCJC20210609103819018), and NSFC/Hong Kong RRC Joint Research Scheme (NFSC/RGC 11961160718).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yang.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., Tang, T. & Yang, J. Energy Plus Maximum Bound Preserving Runge–Kutta Methods for the Allen–Cahn Equation. J Sci Comput 92, 97 (2022). https://doi.org/10.1007/s10915-022-01940-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01940-6

Keywords

Navigation