Skip to main content
Log in

Convergence Analysis for the Invariant Energy Quadratization (IEQ) Schemes for Solving the Cahn–Hilliard and Allen–Cahn Equations with General Nonlinear Potential

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we carry out stability and error analyses for two first-order, semi-discrete time stepping schemes, which are based on the newly developed invariant energy quadratization approach, for solving the well-known Cahn–Hilliard and Allen–Cahn equations with general nonlinear bulk potentials. Some reasonable sufficient conditions about boundedness and continuity of the nonlinear functional are given in order to obtain optimal error estimates. The well-posedness, unconditional energy stabilities and optimal error estimates of the numerical schemes are proved rigorously. Through the comparisons with some other prevalent schemes for several benchmark numerical examples, we demonstrate the stability and the accuracy of the schemes numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. An, N., Huang, C., Yu, X.: Error analysis of direct discontinuous Galerkin method for two-dimensional fractional diffusion-wave equation. Appl. Math. Comput. 349, 148–157 (2019)

    MathSciNet  MATH  Google Scholar 

  2. Cahn, J.W., Allen, S.M.: A microscopic theory for domain wall motion and its experimental varification in Fe–Al alloy domain growth kinetics. J. Phys. Colloq. C7, C7–51 (1977)

    Google Scholar 

  3. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

    Article  MATH  Google Scholar 

  4. Chen, C., Yang, X.: Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J. Comput. Phys. 388, 41–62 (2019)

    Article  MathSciNet  Google Scholar 

  5. Chen, C., Yang, X.: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn–Hilliard Model. Comput. Methods Appl. Mech. Eng. 351, 35–59 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chen, F., Shen, J.: Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn–Hilliard systems. Commun. Comput. Phys. 05, 1189–1208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Zhou, Z., Wang, H.: An optimal-order error estimate for an H\(^1\)-Galerkin mixed method for a pressure equation in compressible porous medium flow. Int. J. Numer. Anal. Model. 9, 132–148 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Chen, L., Zhao, J., Yang, X.: Regularized linear schemes for the molecular beam epitaxy model with slope selection. Appl. Numer. Math. 128, 139–156 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, R., Yang, X., Zhang, H.: Second order, linear and unconditionally energy stable schemes for a hydrodynamic model of smectic-A liquid crystals. SIAM J. Sci. Comput. 39, A2808–A2833 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy. Numer. Math. 63(4), 39–65 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, G., Zuo, L.: Local and parallel finite element method for the mixed Navier–Stokes/Darcy model with Beavers–Joseph interface conditions. Acta Math. Sci. 37, 1331–1347 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Q., Ju, L., Li, X., Qiao, Z.: Stabilized linear semi-implicit schemes for the nonlocal Cahn–Hilliard equation. J. Comput. Phys. 363, 39–54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198, 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27, 404–423 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. In: Computational and Mathematical Models of Microstructural Evolution of Materials Research Society Symposium Proceedings, vol. 529 pp. 39–46, San Francisco (1998)

  17. Feng, X., Prol, A.: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows. Numer. Math. 94, 33–65 (2003)

    Article  MathSciNet  Google Scholar 

  18. Gao, Y., He, X., Mei, L., Yang, X.: Decoupled, linear, and energy stable finite element method for Cahn–Hilliard–Navier–Stokes–Darcy phase field model. SIAM J. Sci. Comput. 40, B110–B137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gong, W., Hinze, M., Zhou, Z.: Finite element method and a priori error estimates for Dirichlet boundary control problems governed by parabolic PDEs. J. Sci. Comput. 66, 941–967 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guillén-González, F., Tierra, G.: On linear schemes for a Cahn–Hilliard diffuse interface model. J. Comput. Phys. 234, 140–171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, Y., Liu, Y., Tang, T.: On large time-stepping methods for the Cahn–Hilliard equation. J. Appl. Numer. Math. 57, 616–628 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, C., Martin, S., An, N.: Optimal \(L^\infty \) (\(L^2\)) error analysis of a direct discontinuous Galerkin method for a time-fractional reaction–diffusion problem. BIT Numer. Math. 58, 661–690 (2018)

    Article  MATH  Google Scholar 

  23. Huang, Q., Yang, X., He, X.: Numerical approximations for a smectic-A liquid crystal flow model: first-order, linear, decoupled and energy stable schemes. Discret. Contin. Dyn. Syst. B 23, 2177–2192 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jia, L., Chen, H., Wang, H.: Mixed-type Galerkin variational principle and numerical simulation for a generalized nonlocal elastic model. J. Sci. Comput. 71, 660–681 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2d Cahn–Hilliard equations. J. Sci. Comput. 70(1), 301–341 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54(3), 1653–1681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, H., Ju, L., Zhang, C., Peng, Q.: Unconditionally energy stable linear schemes for the diffuse interface model with Peng–Robinson equation of state. J. Sci. Comput. 75, 993–1015 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40, 5018–5034 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Phys. D 179(3–4), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Z., Li, X.: Efficient modified techniques of invariant energy quadratization approach for gradient flows. Appl. Math. Lett. 98, 206–214 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lowengrub, J.S., Ratz, A., Voigt, A.: Phase field modeling of the dynamics of multicomponent vesicles spinodal decomposition coarsening budding and fission. Phys. Rev. E 79(3), 031926 (2009)

    Article  MathSciNet  Google Scholar 

  32. Peng, Q., Li, H., Xu, Z.: Energy stable linear schemes for mass-conserved gradient flows with Peng–Robinson equation of state. East Asian J. Appl. Math. 9, 212–232 (2019)

    Article  MathSciNet  Google Scholar 

  33. Shen, J., Wang, C., Wang, S., Wang, X.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. A 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, C., Wise, S.M.: An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 49, 945–969 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, F., Chen, H., Wang, H.: Finite element simulation and efficient algorithm for fractional Cahn–Hilliard equation. J. Comput. Appl. Math. 356, 248–266 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xu, C., Chen, C., Yang, X., He, X.: Numerical approximations for the hydrodynamics coupled binary surfactant phase field model: second-order, linear, unconditionally energy stable schemes. Commun. Math. Sci. 17, 835–858 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, Q., Zhang, X.: Discontinuous Galerkin immersed finite element methods for parabolic interface problems. J. Comput. Appl. Math. 299, 127–139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yang, X.: Linear, first and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, X.: Efficient linear, stabilized, second order time marching schemes for an anisotropic phase field dendritic crystal growth model. Comput. Methods Appl. Mech. Eng. 347, 316–339 (2019)

    Article  MathSciNet  Google Scholar 

  41. Yang, X., Ju, L.: Efficient linear schemes with unconditionally energy stability for the phase field elastic bending energy model. Comput. Methods Appl. Mech. Eng. 315, 691–712 (2017)

    Article  Google Scholar 

  42. Yang, X., Yu, H.: Efficient second order unconditionally stable schemes for a phase field moving contact line model using an invariant energy quadratization approach. SIAM J. Sci. Comput. 40, B889–B914 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three components Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Model. Methods Appl. Sci. 27, 1993–2030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yuan, Y., Sun, T., Li, C., Liu, Y., Yang, Q.: Mixed volume element combined with characteristic mixed finite volume element method for oil–water two phase displacement problem. J. Comput. Appl. Math. 340, 404–419 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, J., Chen, C., Yang, X.: A novel decoupled and stable scheme for an anisotropic phase-field dendritic crystal growth model. Appl. Math. Lett. 95, 122–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for immiscible mixtures of nematic liquid crystals and viscous fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)

    Article  Google Scholar 

  48. Zhou, Z., Chen, F., Chen, H.: Local discontinuous Galerkin approximation of non-Fickian diffusion model in viscoelastic polymers. Appl. Anal. 94, 819–839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiaofeng Yang: This author’s research is partially supported by the U.S. National Science Foundation under Grant Numbers DMS-1720212 and DMS-1818783.

Guo-Dong Zhang: This author’s research is partially supported by National Science Foundation of China under Grant Numbers 11601468 and 11771375 and Shandong Province Natural Science Foundation (ZR2018MA008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, GD. Convergence Analysis for the Invariant Energy Quadratization (IEQ) Schemes for Solving the Cahn–Hilliard and Allen–Cahn Equations with General Nonlinear Potential. J Sci Comput 82, 55 (2020). https://doi.org/10.1007/s10915-020-01151-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01151-x

Keywords

Mathematics Subject Classification

Navigation