Skip to main content
Log in

Multilevel Local Defect-Correction Method for Nonsymmetric Eigenvalue Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this study, a multilevel local defect-correction method is designed for solving nonsymmetric eigenvalue problems. The main feature of our approach is the transformation of the nonsymmetric eigenvalue problems into several symmetric boundary value problems defined in a multilevel finite element space sequence and some low-dimensional nonsymmetric eigenvalue problems defined in a specially designed correction space. Moreover, the symmetric boundary value problems involved in our algorithm are solved by the local defect-correction strategy that divides the computing domain into small-scale subdomains. Since solving the high-dimensional nonsymmetric eigenvalue problems is avoided which is quite time-consuming compared with that of solving boundary value problems, the presented algorithm greatly improves the solving efficiency for nonsymmetric eigenvalue problems. Rigorous theoretical analysis and several numerical experiments are given to demonstrate the efficiency of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Babuška, I., Osborn, J.: Eigenvalue Problems. In: Lions, P.G., Ciarlet, P.G. (eds.) Handbook of Numerical Analysis, vol. II Finite, Element Methods (Part 1), pp. 641–787. North-Holland, Amsterdam (1991)

  3. Bi, H., Li, Z., Yang, Y.: Local and parallel finite element algorithms for the Steklov eigenvalue problem. Numer. Methods Partial Differ. Equ. 32(2), 399–417 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bi, H., Yang, Y., Li, H.: Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 15(6), A2575–A2597 (2013)

    Article  MathSciNet  Google Scholar 

  5. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994)

    Book  Google Scholar 

  6. Chen, H., Xie, H., Xu, F.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  8. Dai, X., Zhou, A.: Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J. Numer. Anal. 46(1), 295–324 (2008)

    Article  MathSciNet  Google Scholar 

  9. Dong, X., He, Y., Wei, H., Zhang, Y.: Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv. Comput. Math. 44(4), 1295–1319 (2018)

    Article  MathSciNet  Google Scholar 

  10. Du, G., Zuo, L.: Local and parallel finite element post-processing scheme for the Stokes problem. Comput. Math. Appl. 73, 129–140 (2017)

    Article  MathSciNet  Google Scholar 

  11. Du, G., Hou, Y., Zuo, L.: A modified local and parallel finite element method for the mixed Stokes-Darcy model. J. Math. Anal. Appl. 435(2), 1129–1145 (2016)

    Article  MathSciNet  Google Scholar 

  12. Grisvard, P.: Elliptic problems in nonsmooth domains. Pitman, Boston, MA (1985)

    MATH  Google Scholar 

  13. He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier-Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China: Math. 59, 2037–2048 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kolman, K.: A two-level method for nonsymmetric eigenvalue problems. Acta Math. Appl. Sin. (English series) 21(1), 112 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Li, Y., Han, X., Xie, H., You, C.: Local and parallel finite element algorithm based on multilevel discretization for eigenvalue problem. Int. J. Numer. Anal. & Model. 13(1), 73–89 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Lin, Q., Xie, H.: An observation on Aubin-Nitsche Lemma and its applications. Math. Pract. Theory 41(17), 247–258 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comp. 84(291), 71–88 (2015)

    Article  MathSciNet  Google Scholar 

  19. Lin, Q., Xie, H., Xu, F.: Multilevel correction adaptive finite element method for semilinear elliptic equation. Appl. Math. 60(5), 527–550 (2015)

    Article  MathSciNet  Google Scholar 

  20. Liu, Q., Hou, Y.: Local and parallel finite element algorithms for timedependent convection-diffusion equations. Appl. Math. Mech. Engl. Ed. 30, 787–794 (2009)

    Article  Google Scholar 

  21. Ma, F., Ma, Y., Wo, W.: Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. 28(1), 27–35 (2007)

    Article  MathSciNet  Google Scholar 

  22. Ma, Y., Zhang, Z., Ren, C.: Local and parallel finite element algorithms based on two-grid discretization for the stream function form of Navier-Stokes equations. Appl. Math. Comput. 175, 786–813 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Shang, Y., Wang, K.: Local and parallel finite element algorithms based on two-grid discretizations for the transient Stokes equations. Numer. Algor. 54, 195–218 (2010)

    Article  MathSciNet  Google Scholar 

  24. Shang, Y., He, Y., Luo, Z.: A comparison of three kinds of local and parallel finite element algorithms based on two-grid discretizations for the stationary Navier-Stokes equations. Comput. Fluids 40, 249–257 (2011)

    Article  MathSciNet  Google Scholar 

  25. Tang, Q., Huang, Y.: Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow. J. Sci. Comput. 70, 149–174 (2017)

    Article  MathSciNet  Google Scholar 

  26. Schatz, A., Wahlbin, L.: Interior maximum-norm estimates for finite element methods, Part II. Math. Comp. 64, 907–928 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Peng, Z., Bi, H., Li, H., Yang, Y.: A multilevel correction method for convection-diffusion eigenvalue problems. Math. Probl. Eng. article ID 904347 https://doi.org/10.1155/2015/904347 (2015)

  28. Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)

    Article  MathSciNet  Google Scholar 

  29. Xie, H.: A type of multilevel method for the Steklov eigenvalue problem. IMA J. Numer. Anal. 34, 592–608 (2014)

    Article  MathSciNet  Google Scholar 

  30. Xie, H., Zhang, Z.: A multilevel correction scheme for nonsymmetric eigenvalue problems by finite element methods, arXiv:1505.06288 (2015)

  31. Xu, F.: A cascadic adaptive finite element method for nonlinear eigenvalue problems in quantum physics. Multiscale Model. Simul. 18(1), 198–220 (2020)

    Article  MathSciNet  Google Scholar 

  32. Xu, F., Huang, Q.: A type of cascadic multigrid method for coupled semilinear elliptic equations. Numer. Algor. 83, 485–510 (2020)

    Article  MathSciNet  Google Scholar 

  33. Xu, F., Huang, Q.: Local and parallel multigrid method for nonlinear eigenvalue problems. J. Sci. Comput. 82, 20 (2020)

    Article  MathSciNet  Google Scholar 

  34. Xu, F., Huang, Q., Chen, S., Bing, T.: An adaptive multigrid method for semilinear elliptic equations. East Asian J. Appl. Math. 9(4), 683–702 (2019)

    Article  MathSciNet  Google Scholar 

  35. Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69(231), 881–909 (1999)

    Article  MathSciNet  Google Scholar 

  36. Xu, J., Zhou, A.: Local and parallel finite element algorithms for eigenvalue problems. Acta. Math. Appl. Sin. Engl. Ser. 18, 185–200 (2002)

    Article  MathSciNet  Google Scholar 

  37. Yu, J., Shi, F., Zheng, H.: Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM J. Sci. Comput. 36(5), C547–C567 (2014)

    Article  MathSciNet  Google Scholar 

  38. Zhao, R., Yang, Y., Bi, H.: Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration. Numer. Methods Partial Differ. Equ. 35(2), 851–869 (2019)

    Article  MathSciNet  Google Scholar 

  39. Zheng, H., Yu, J., Shi, F.: Local and parallel finite element algorithm based on the partition of unity for incompressible flows. J. Sci. Comput. 65(2), 512–532 (2015)

    Article  MathSciNet  Google Scholar 

  40. Zheng, H., Shi, F., Hou, Y., Zhao, J., Cao, Y., Zhao, R.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435(1), 1–19 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 11801021, 11971047,72103210), General projects of science and technology plan of Beijing Municipal Education Commission (Grant No. KM202110005011), Soft Science Foundation of Science and Technology Department of Guangdong, China (Grant No. 2019A101002019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkun Ma.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Huang, Q., Dai, H. et al. Multilevel Local Defect-Correction Method for Nonsymmetric Eigenvalue Problems. J Sci Comput 92, 85 (2022). https://doi.org/10.1007/s10915-022-01926-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01926-4

Keywords

Navigation