Skip to main content
Log in

Uniformly Accurate Nested Picard Iterative Integrators for the Klein-Gordon Equation in the Nonrelativistic Regime

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a class of uniformly accurate nested Picard iterative integrator (NPI) Fourier pseudospectral methods is proposed for the nonlinear Klein-Gordon equation (NLKG) in the nonrelativistic regime, involving a dimensionless parameter \(\varepsilon \ll 1\) inversely proportional to the speed of light. For \(0<\varepsilon \ll 1\), the solution propagates waves in time with \(O(\varepsilon ^2)\) wavelength, which brings significant difficulty in designing accurate and efficient numerical schemes. The idea of NPI methods can be applied to derive arbitrary higher-order methods in time with optimal and uniform accuracy (w.r.t. \(\varepsilon \in (0,1]\)). Detailed constructions of the NPI methods up to the third order in time are presented for NLKG with a cubic/quadratic nonlinear term, where the corresponding error estimates are rigorously analyzed. In addition, the practical implementation of the second-order NPI method via Fourier pseupospectral discretization is clearly demonstrated. Some numerical examples are provided to support our theoretical results and show the accuracy and efficiency of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

The codes and datas during the current study are available at https://github.com/xuanxuanzhou/NPI-method-matlab-code-for-KG

References

  1. Adomian, G.: Nonlinear Klein-Gordon equation. Appl. Math. Lett. 9, 9–10 (1996)

    Article  MathSciNet  Google Scholar 

  2. Bao, W., Cai, Y., Zhao, X.: A uniformly accurate multiscale time integrator pseudospectral method for the Klein-Gordon equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 52, 2488–2511 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bao, W., Dong, X., Zhao, X.: Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations. J. Math. Study 47, 111–150 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bao, W., Zhao, X.: Comparison of numerical methods for the nonliear Klein-Gordon equation in the nonrelativistic limit regime. J. Comput. Phys. 398, 108886 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bao, W., Zhao, X.: A uniform second-order in time multiscale time integrator for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime,preprint

  7. Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to classical splitting schemes in the NLS splitting. Math. Comp 87, 1227–1254 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bratsos, A.G.: On the numerical solution of the Klein-Gordon equation, Numer. Methods Partial. Differ. Equ 25, 939–951 (2009)

    MATH  Google Scholar 

  9. Cai, Y., Wang, Y.: Uniformly accurate nested Picard iterative integrators for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 57, 1602–1624 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cao, W., Guo, B.: Fourier collocation method for solving nonlinear Klein-Gordon equation. J. Comput. Phys. 108, 296–305 (1993)

    Article  MathSciNet  Google Scholar 

  11. Chartier, P., Crouseilles, N., Lemou, M., Méhats, F.: Uniformly accurate numerical schemes for highly oscillatory Klein-Gordon and nonlinear Schrödinger equations. Numer. Math. 129, 211–250 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cohen, D., Hairer, E., Lubich, Ch.: Modulated Fourier expansions of highly oscillatory differential equations. Found. Comput. Math. 3, 327–345 (2003)

    Article  MathSciNet  Google Scholar 

  13. Deeba, E.Y., Khuri, S.A.: A decomposition method for solving the nonlinear Klein-Gordon equation. J. Comput. Phys. 124, 442–448 (1996)

    Article  MathSciNet  Google Scholar 

  14. Dehghan, M., Shokri, A.: Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230, 400–410 (2009)

    Article  MathSciNet  Google Scholar 

  15. Dong, X., Xu, Z., Zhao, X.: On time-splitting pseudospectral discretization for nonlinear Klein-Gordon equation in nonrelativistic limit regime, Commun. Comput. Phys. 16, 440–466 (2014)

    Article  MathSciNet  Google Scholar 

  16. Duncan, D.B.: Symplectic finite difference approximations of the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 34, 1742–1760 (1997)

    Article  MathSciNet  Google Scholar 

  17. Faou, E., Schratz, K.: Asympotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime. Numer. Math. 126, 2441–469 (2014)

    Article  Google Scholar 

  18. Ginibre, J., Velo, G.: The global Cauchy problem for the nonlinear Klein-Gordon equation. Math. Z. 189, 487–505 (1985)

    Article  MathSciNet  Google Scholar 

  19. Grundland, A.M., Infeld, E.: A family of nonlinear Klein-Gordon equations and their solutions. J. Math. Phys. 33, 2498–2503 (1992)

    Article  MathSciNet  Google Scholar 

  20. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  21. Ibrahim, S., Majdoub, M., Masmoudi, N.: Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity. Comm. Pure Appl. Math 59, 1639–1658 (2006)

    Article  MathSciNet  Google Scholar 

  22. Jiménez, S., Vázquez, L.: Analysis of four numerical schemes for a nonlinear Klein-Gordon equation. Appl. Math. 35, 61–94 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Khalifa, M.E., Elgamal, M.: A numerical solution to Klein-Gordon equation with Dirichlet boundary condition. Appl. Math. Comput. 160, 451–475 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32, 1839–1875 (1995)

    Article  MathSciNet  Google Scholar 

  25. Li, X., Guo, B.: A Legendre spectral method for solving the nonlinear Klein-Gordon equation. J. Comput. Math. 15, 105–126 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Liu, C., Iserles, A., Wu, X.: Symmetric and arbitrarily high-order Birkhoff-Hermite time integrators and their longtime behaviour for solving nonlinear Klein-Gordon equations. J. Comput. Phys. 356, 1–30 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lu, Y., Zhang, Z.F.: Higher order asymptotic analysis of the nonlinear Klein- Gordon equation in the non-relativistic limit regime. Asymptotic Anal 102, 157–175 (2017)

    Article  MathSciNet  Google Scholar 

  28. Machihara, S., Nakanishi, K., Ozawa, T.: Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations. Math. Ann. 322, 603–621 (2002)

    Article  MathSciNet  Google Scholar 

  29. Masmoudi, N., Nakanishi, K.: From nonlinear klein-gordon equation to a system of coupled nonlinear Schrödinger equations. Math. Ann. 324, 359–389 (2002)

    Article  MathSciNet  Google Scholar 

  30. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear Schrödinger equations in the energy space. Found. Comput. Math. 18, 731–755 (2018)

    Article  MathSciNet  Google Scholar 

  31. Schratz, K., Zhao, X.: On the comparison of asymptotic expansion techniques for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. Discrete. Cont. Dyn-B 25, 2841–2865 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Yang, Y.B., Jiang, Y.L., Yu, B.H.: Unconditional optimal error estimates of linearized, decoupled and conservative Galerkin FEMs for the Klein-Gordon-Schrödinger Equation. J. Sci. Comput. 87, (2021). https://doi.org/10.1007/s10915-021-01510-2

  33. Wang, Y., Zhao, X.: Symmetric high order Gautschi-type exponential wave integrators pseudospectral method for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime. J. Numer. Anal. Model 15, 405–427 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Zhao, X.: A combination of multiscale time integrator and two-scale formulation for the nonlinear Schrödinger equation with wave operator. J. Comput. Appl. Math. 326, 320–336 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was partially supported by NSFC grants 12171041, 11771036 (Y. Cai) and by NSAF No. U1930402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanxuan Zhou.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by NSFC grants 12171041, 11771036 (Y. Cai) and by NSAF No. U1930402.

Appendices

Appendix

Appendix A. Details of the Third-Order NPI Method

Here, we shall give the details of programming by using Matlab R2012a. At first, let \(\psi _{\pm }^{n+1}=\psi _{\pm }^{n,3}:=e^{\mp i\mathcal {D}_\varepsilon \tau }\psi _\pm ^{n}+\delta _{\pm }^{n,1}(\tau )+\delta _{\pm }^{n,2}(\tau )+\delta _{\pm }^{n,3}(\tau )\), can be stated as below by specifying \(\delta _{\pm }^{n,3}\), i.e. evaluating (2.22) for \(k=3\),

$$\begin{aligned}&\delta _{\pm }^{n,3}(s)\\&\quad =s^2p_{-2}(\pm s)\frac{1}{2}\mathcal {B}^2\mathcal {F}_{1,\pm }^n+ s^2p_0(\pm s)\frac{1}{2}\mathcal {B}^2\mathcal {F}_{2,\pm }^n + s^2p_{2}(\pm s)\frac{1}{2}\mathcal {B}^2\mathcal {F}_{2,\mp }^n+ s^2p_{4}(\pm s)\frac{1}{2}\mathcal {B}^2\mathcal {F}_{1,\mp }^n\\&\qquad +\sum _{k=1}^6\sum \limits _{\sigma =\pm }[( \mp sq_{k,\sigma }(\pm s) +q_{k,1,\sigma }(\pm s) )\mathcal {B}\mathcal {F}_{2,k,\pm \sigma }^n\,\pm q_{k,1,\sigma }(\pm s)\mathcal {F}_{3,k,\pm \sigma }^n]\\&\qquad +p_{-2,2}(\pm s)( 1/2\mathcal {B}^2\mathcal {F}_{1,\pm }^n \pm \mathcal {B}\mathcal {G}_{3,\pm }^n +\mathcal {G}_{1,3,\pm }^n +\mathcal {E}_{1,\pm }^n)\\&\qquad +p_{0,2}(\pm s)( 1/2\mathcal {B}^2\mathcal {F}_{2,\pm }^n \pm \mathcal {B}\mathcal {G}_{4,\pm }^n +\mathcal {G}_{2,3,\pm }^n +\mathcal {E}_{2,\pm }^n )\\&\qquad +p_{2,2}(\pm s)( 1/2\mathcal {B}^2\mathcal {F}_{2,\mp }^n \pm \mathcal {B}\mathcal {G}_{4,\mp }^n +\mathcal {G}_{2,3,\mp }^n +\mathcal {E}_{2,\mp }^n )\\&\qquad +p_{4,2}(\pm s)( 1/2\mathcal {B}^2\mathcal {F}_{1,\mp }^n \pm \mathcal {B}\mathcal {G}_{3,\mp }^n +\mathcal {G}_{1,3,\mp }^n +\mathcal {E}_{1,\mp }^n )\\&\qquad +p_{-2,1}(\pm s)( \mp s\mathcal {B}^2\mathcal {F}_{1,\pm }^n -s\mathcal {B}\mathcal {G}_{3,\pm }^n ) +p_{0,1}(\pm s)( \mp s\mathcal {B}^2\mathcal {F}_{2,\pm }^n -s\mathcal {B}\mathcal {G}_{4,\pm }^n )\\&\qquad +p_{2,1}(\pm s)( \mp s\mathcal {B}^2\mathcal {F}_{2,\mp }^n -s\mathcal {B}\mathcal {G}_{4,\mp }^n ) +p_{4,1}(\pm s)( \mp s\mathcal {B}^2\mathcal {F}_{1,\mp }^n -s\mathcal {B}\mathcal {G}_{3,\mp }^n )\\&\qquad +\sum _{k=1}^4\sum \limits _{\sigma _1=\pm }\sum \limits _{\sigma _2=\pm }(r_{k,\sigma _1,\sigma _2}(\pm s)\mathcal {H}^n_{k,\pm ,\pm \sigma _1,\pm \sigma _2} + r_{k+4,\sigma _1,\sigma _2}(\pm s)\mathcal {H}^n_{k,\mp ,\pm \sigma _1,\pm \sigma _2})\nonumber \\&\qquad + \sum _{k=1}^6\sum \limits _{\sigma =\pm }[q_{k,2,\sigma }(\pm s)\mathcal {F}_{4,k,\pm \sigma }^n \pm q_{k,4,\sigma }(\pm s)\mathcal {F}_{4,k+6,\pm \sigma }^n +q_{k,3,\sigma }(\pm s)\mathcal {F}_{5,k,\pm \sigma }^n]\\&\qquad + \sum _{j=1}^{3}\sum _{k=1}^{6}\sum \limits _{\sigma =\pm } m_{j,k,\sigma }(\pm s)\mathcal {F}_{6,j,k,\pm \sigma }^n, \end{aligned}$$

where for \(m=1,2\) and \(\sigma _1,\sigma _2=\pm \),

$$\begin{aligned}&\mathcal {G}_{1,3,\pm }^n=\mathcal {A} \left( \frac{1}{2}(\psi _\pm ^n)^2\overline{\mathcal {B}^2\psi _\mp ^n}+ (\mathcal {B}^2\psi _\pm ^n)\psi _\pm ^n\overline{\psi _\mp ^n}\right) ,\\&\mathcal {G}_{2,3,\pm }^n=\mathcal {A} \bigg (\psi _\pm ^n\overline{\psi _\mp ^n}(\mathcal {B}^2\psi _\mp ^n)+(|\psi _\pm ^n|^2+|\psi _{\mp }^n|^2)(\mathcal {B}^2\psi _\pm ^n)\\&\qquad \qquad + \frac{1}{2}(\psi _\pm ^n)^2\overline{\mathcal {B}^2\psi _\pm ^n}+\psi _\pm ^n\psi _\mp ^n\overline{(\mathcal {B}^2\psi _\mp ^n)}\bigg ) ,\\&\mathcal {F}_{3,m,\pm }^n=\mathcal {A}\left( 2(\mp \psi _{\mp }^n\overline{\mathcal {B}\psi _{\pm }^n} \pm \overline{\psi _{\pm }^n}\mathcal {B}\psi _{\mp }^n)\mathcal {F}_{m,\mp }^n -2(\pm \psi _{\mp }^n\mathcal {B}\psi _{\mp }^n)\overline{\mathcal {F}_{m,\pm }^n}\right) ,\\&\mathcal {F}_{3,m+2,\pm }^n=\mathcal {A}\bigg (2(\psi _-^n\overline{\mathcal {B}\psi _-^n}- \psi _+^n\overline{\mathcal {B}\psi _+^n} - \overline{\psi }_+^n\mathcal {B}\psi _+^n+ \overline{\psi }_-^n\mathcal {B}\psi _-^n)\mathcal {F}_{m,\mp }^n\\&\qquad \qquad - 2(\psi _+^n\mathcal {B}\psi _-^n- \psi _-^n\mathcal {B}\psi _+^n)\overline{\mathcal {F}_{m,\pm }^n}\bigg ),\\&\mathcal {F}_{3,m+4,\pm }^n=\mathcal {A}\left( 2(\pm \psi _{\pm }^n\overline{\mathcal {B}\psi _{\mp }^n} \mp \overline{\psi _{\mp }^n}\mathcal {B}\psi _{\pm }^n)\mathcal {F}_{m,\mp }^n -2(\mp \psi _{\pm }^n\mathcal {B}\psi _{\pm }^n)\overline{\mathcal {F}_{m,\pm }^n}\right) ,\\&\mathcal {E}_{1,\pm }^n=\mathcal {A}(-2\psi _{\pm }^n(\mathcal {B}\psi _{\pm }^n)\overline{\mathcal {B}\psi _{\mp }^n} + \overline{\psi _{\mp }^n}(\mathcal {B}\psi _{\pm }^n)^2),\\&\mathcal {E}_{2,\pm }^n=\mathcal {A}\bigg ( 2\psi _{\pm }^n|\mathcal {B}\psi _{\mp }^n|^2+2\psi _{\pm }^n|\mathcal {B}\psi _{\pm }^n|^2- 2\psi _{\mp }^n(\mathcal {B}\psi _{\pm }^n)\overline{\mathcal {B}\psi _{\mp }^n}\\&\qquad \qquad -2\overline{\psi _{\mp }^n}(\mathcal {B}\psi _{\pm }^n)\mathcal {B}\psi _{\mp }^n +\overline{\psi _{\pm }^n}(\mathcal {B}\psi _{\pm }^n)^2 \bigg ),\\&\mathcal {H}^n_{1,\pm ,\sigma _1,\sigma _2}= \mathcal {A}(-2\psi _{\pm }^nF_{1,\sigma _1}^n\overline{F_{1,-\sigma _2}^n}+ \overline{\psi _{\mp }^n}F_{1,\sigma _1}^nF_{1,\sigma _2}^n),\\&\mathcal {H}^n_{2,\pm ,\sigma _1,\sigma _2}=\mathcal {A}(-2\psi _{\pm }^nF_{1,\sigma _1}^n\overline{F_{2,-\sigma _2}^n}+ \overline{\psi _{\mp }^n}F_{1,\sigma _1}^nF_{2,\sigma _2}^n),\\&\mathcal {H}^n_{3,\pm ,\sigma _1,\sigma _2}= \mathcal {A}(-2\psi _{\pm }^nF_{2,\sigma _1}^n\overline{F_{1,-\sigma _2}^n}+ \overline{\psi _{\mp }^n}F_{2,\sigma _1}^nF_{1,\sigma _2}^n),\\&\mathcal {H}^n_{4,\pm ,\sigma _1,\sigma _2}= \mathcal {A}(-2\psi _{\pm }^nF_{2,\sigma _1}^n\overline{F_{2,-\sigma _2}^n}+ \overline{\psi _{\mp }^n}F_{2,\sigma _1}^nF_{2,\sigma _2}^n), \end{aligned}$$

and the rest nonlinear terms are described below

$$\begin{aligned}&\mathcal {F}_{4,m,\pm }^n= \mathcal {A}\left( 2\psi _{\mp }^n\overline{\psi _{\pm }^n}\mathcal {G}_{m,\mp }^n+(\psi _\mp ^n)^2\overline{\mathcal {G}_{m,\pm }^n}\right) ,\quad m=1,2,\\&\mathcal {F}_{4,m+2,\pm }^n= \mathcal {A}\left( 2(|\psi _+^n|^2+|\psi _-^n|^2)\mathcal {G}_{m,\mp }^n+ 2\psi _+^n\psi _-^n\overline{\mathcal {G}_{m,\pm }^n}\right) ,\quad m=1,2,\\&\mathcal {F}_{4,m+4,\pm }^n= \mathcal {A}\left( 2\psi _{\pm }^n\overline{\psi _{\mp }^n}\mathcal {G}_{m,\mp }^n+(\psi _\pm ^n)^2\overline{\mathcal {G}_{m,\pm }^n}\right) ,\quad m=1,2,\\&\mathcal {F}_{4,m+6,\pm }^n= \mathcal {A}\left( 2\psi _{\mp }^n\overline{\psi _{\pm }^n}\mathcal {G}_{m,\mp }^n- (\psi _\mp ^n)^2\overline{\mathcal {G}_{m,\pm }^n}\right) ,\quad m=1,2,\\&\mathcal {F}_{4,m+8,\pm }^n= \mathcal {A}\left( 2(|\psi _+^n|^2+|\psi _-^n|^2)\mathcal {G}_{m,\mp }^n- 2\psi _+^n\psi _-^n\overline{\mathcal {G}_{m,\pm }^n}\right) , m=1,2,\\&\mathcal {F}_{4,m+10,\pm }^n= \mathcal {A}\left( 2\psi _{\pm }^n\overline{\psi _{\mp }^n}\mathcal {G}_{m,\mp }^n- (\psi _\pm ^n)^2\overline{\mathcal {G}_{m,\pm }^n}\right) ,\quad m=1,2,\\&\mathcal {F}_{5,m,\pm }^n= \mathcal {A}\left( 2\psi _{\mp }^n\overline{\psi _{\pm }^n}\mathcal {B}\mathcal {F}_{m,\mp }^n+ (\psi _\mp ^n)^2\overline{\mathcal {B}\mathcal {F}_{m,\pm }^n}\right) ,\quad m=1,2,\\&\mathcal {F}_{5,m+2,\pm }^n=\mathcal {A}\left( 2(|\psi _+^n|^2+|\psi _-^n|^2)\mathcal {B}\mathcal {F}_{m,\mp }^n+ 2\psi _+^n\psi _-^n\overline{\mathcal {B}\mathcal {F}_{m,\pm }^n}\right) ,m=1,2,\\&\mathcal {F}_{5,m+4,\pm }^n= \mathcal {A}\left( 2\psi _{\pm }^n\overline{\psi _{\mp }^n}\mathcal {B}\mathcal {F}_{m,\mp }^n+ (\psi _\pm ^n)^2\overline{\mathcal {B}\mathcal {F}_{m,\pm }^n}\right) ,\quad m=1,2,\\&\mathcal {F}_{6,1,k,\pm }^n=\mathcal {A}\left( 2(|\psi _+^n|^2+|\psi _-^n|^2)\mathcal {F}_{2,k,\pm }^n+ 2\psi _+^n\psi _-^n\overline{\mathcal {F}_{2,k,\mp }^n}\right) , k=1,2,\dots ,6,\\&\mathcal {F}_{6,2,k,\pm }^n= \mathcal {A}\left( 2\psi _{\mp }^n\overline{\psi _{\pm }^n}\mathcal {F}_{2,k,\pm }^n+(\psi _\mp ^n)^2\overline{\mathcal {F}_{2,k,\mp }^n}\right) ,\quad k=1,2,\dots ,6,\\&\mathcal {F}_{6,3,k,\pm }^n= \mathcal {A}\left( 2\psi _{\pm }^n\overline{\psi _{\mp }^n}\mathcal {F}_{2,k,\pm }^n+(\psi _\pm ^n)^2\overline{\mathcal {F}_{2,k,\mp }^n}\right) ,\quad k=1,2,\dots ,6. \end{aligned}$$

Finally, the coefficients are given by \(p_{0,2}(s)=e^{\frac{-is}{\varepsilon ^2}}\frac{s^3}{3}\), \(p_{\pm 2,2}(s)=e^{\frac{-is}{\varepsilon ^2}}\int _{0}^{s}w^2e^{\frac{\pm 2iw}{\varepsilon ^2}}dw\), \(p_{4,2}(s)=e^{\frac{-is}{\varepsilon ^2}}\int _{0}^{s}w^2e^{\frac{4 iw}{\varepsilon ^2}}dw\) and

$$\begin{aligned}&q_{1+k,1,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}} e^{\frac{\pm (2-k) iw}{\varepsilon ^2}}wg_{1,1}(\pm w)\,dw,\,k=0,2,4,\\&q_{2+k,1,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}}e^{\frac{\pm (2-k) iw}{\varepsilon ^2}} wg_{2,1}(\pm w)\,dw,k=0,2,4,\\&g_{1,1}(\pm w)=p_{-2}(\mp w) + p_4(\pm w),\,g_{2,1}(\pm w)= p_{2}(\mp w) + p_0(\pm w),\\&q_{1+k,2,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}}e^{\frac{\pm (2-k) iw}{\varepsilon ^2}}g_{1,2}(\pm w) \,dw,\,k=0,2,4,\\&q_{2+k,2,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}}e^{\frac{\pm (2-k) iw}{\varepsilon ^2}} g_{2,2}(\pm w)\,dw,\,k=0,2,4,\\&g_{1,2}(\pm w)=p_{-2,1}(\mp w)+p_{4,1}(\pm w),\,g_{2,2}(\pm w)=p_{2,1}(\pm w)+p_{0,1}(\mp w),\\&q_{1+k,3,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}}e^{\frac{\pm (2-k) iw}{\varepsilon ^2}} g_{1,3}(\pm w)\,dw,\,k=0,2,4,\\&q_{2+k,3,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}}e^{\frac{\pm (2-k) iw}{\varepsilon ^2}} g_{2,3}(\pm w)\,dw,\,k=0,2,4,\\&g_{1,3}(\pm w)=w(\pm p_{-2}(\mp w) \mp p_4(\pm w)),\,g_{2,3}(\pm w)=w(\mp p_2(\pm w) \pm p_0(\mp w)),\\&q_{1+k,4,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}}e^{\frac{\pm (2-k) iw}{\varepsilon ^2}}g_{1,4}(\pm w)\,dw,\,k=0,2,4,\\&q_{2+k,4,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}}e^{\frac{\pm (2-k) iw}{\varepsilon ^2}} g_{1,4}(\pm w)\,dw,\,k=0,2,4,\\&g_{1,4}(\pm w)=\mp p_{-2,1}(\mp w) \pm p_{4,1}(\pm w),\,g_{2,4}(\pm w)=\pm p_{2,1}(\pm w)\mp p_{0,1}(\mp w),\\&r_{1+m,\sigma _1,\sigma _2}(s)=e^{\frac{-is}{\varepsilon ^2}}\int _0^s g_{1+\frac{m}{2},1}(\sigma _1 w)g_{1,1}(\sigma _2 w)\,dw,\quad m=0,2\\&r_{2+m,\sigma _1,\sigma _2}(s)=e^{\frac{-is}{\varepsilon ^2}}\int _0^s g_{1+\frac{m}{2},1}(\sigma _1 w)g_{2,1}(\sigma _2 w)\,dw,\quad m=0,2\\&r_{5+m,\sigma _1,\sigma _2}(s)=e^{\frac{-is}{\varepsilon ^2}}\int _0^s e^{\frac{2iw}{\varepsilon ^2}}g_{1+\frac{m}{2},1}(\sigma _1 w)g_{1,1}(\sigma _2 w)\,dw,\quad m=0,2,\\&r_{6+m,\sigma _1,\sigma _2}(s)=e^{\frac{-is}{\varepsilon ^2}}\int _0^se^{\frac{2iw}{\varepsilon ^2}} g_{1+\frac{m}{2},1}(\sigma _1 w)g_{2,1}(\sigma _2 w)\,dw,\quad m=0,2,\\&m_{1,k,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}} g_{k,6}(w)\,dw,\, m_{2,k,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}} e^{\frac{\pm 2iw}{\varepsilon ^2}}g_{k,6}(w)\,dw,\\&m_{3,k,\pm }(s)=\int _0^se^{\frac{- i(s-w)}{\varepsilon ^2}} e^{\frac{\mp 2iw}{\varepsilon ^2}}g_{k,6}(w)\,dw,\, g_{k,6}(w)=q_{k,\pm }( w)+q_{k,\mp }(- w),\,1\le k\le 6. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Zhou, X. Uniformly Accurate Nested Picard Iterative Integrators for the Klein-Gordon Equation in the Nonrelativistic Regime. J Sci Comput 92, 53 (2022). https://doi.org/10.1007/s10915-022-01909-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01909-5

Keywords

Mathematics Subject Classification

Navigation