Proof of Theorem 1
We first note that due to Proposition 1-(i)
$$\begin{aligned} \int _{\Omega } \rho \circ X_1^n(x) \gamma ^n(x) dx = \int _\Omega \rho (x)\, dx, \quad \int _{\Omega } \rho \circ {{\tilde{X}}}_1^n(x) {{\tilde{\gamma }}}^n(x) dx = \int _\Omega \rho (x)\, dx \end{aligned}$$
(19)
hold for any \(\rho \in \Psi \) and \(n=1,\dots , N_t\). We substitute \(1 \in \Psi _h\) into \(\psi _h\) in scheme (9) in the following.
We prove (i) by induction.
(I) Initial steps (\(n=0, 1\)): Since (10) with \(n=0\) is trivial, we prove it for \(n = 1\). We have
$$\begin{aligned} {\mathcal {M}}_h^1&= \int _\Omega \phi _h^1(x) dx \\&= \int _\Omega \phi _h^0\circ X_1^1(x)\gamma ^1(x) dx + \Delta t \Bigl ( \int _\Omega f^1(x) dx + \int _\Gamma g^1(x) ds \Bigr ) \qquad (\text{ by }~(9a)) \\&= \int _\Omega \phi _h^0 (y) dy + \Delta t \Bigl ( \int _\Omega f^1(x) dx + \int _\Gamma g^1(x) ds \Bigr ) \qquad (\text{ by }~(19)) \\&= {\mathcal {M}}_h^0 + \Delta t \Bigl ( \int _\Omega f^1(x) dx + \int _\Gamma g^1(x) ds \Bigr ). \end{aligned}$$
Hence, (10) holds for \(n=0, 1\).
(II) General steps: Let \(m\in \{2,\ldots , N_T\}\) and suppose that (10) holds true for \(n=m-1\). Then, we obtain (10) for \(n=m\) as follows:
$$\begin{aligned} {\mathcal {M}}_h^m&= \int _\Omega \Bigl ( \frac{3}{2} \phi _h^m - \frac{1}{2} \phi _h^{m-1} \Bigr ) dx \\&= \int _\Omega \Bigl ( \frac{3}{2} \phi _h^m - \frac{1}{2} \phi _h^{m-1} \circ X_1^m \gamma ^m \Bigr ) dx \qquad (\text{ cf. }~(19)) \\&= \int _\Omega \Bigl ( \frac{3}{2} \phi _h^{m-1} \circ X_1^m \gamma ^m - \frac{1}{2} \phi _h^{m-2} \circ {\tilde{X}}_1^m {\tilde{\gamma }}^m \Bigr ) dx + \Delta t \Bigl ( \int _\Omega f^m(x) dx + \int _\Gamma g^m(x) ds \Bigr ) \quad (\text{ by }~(9b))\\&= \int _\Omega \Bigl ( \frac{3}{2} \phi _h^{m-1} - \frac{1}{2} \phi _h^{m-2} \Bigr ) dx + \Delta t \Bigl ( \int _\Omega f^m(x) dx + \int _\Gamma g^m(x) ds \Bigr ) \\&= {\mathcal {M}}_h^{m-1} + \Delta t \Bigl ( \int _\Omega f^m(x) dx + \int _\Gamma g^m(x) ds \Bigr ) \qquad (\text{ cf. }~(19)) \\&= {\mathcal {M}}_h^0 + \Delta t \sum _{i=1}^m \Bigl ( \int _\Omega f^i(x) dx + \int _\Gamma g^i(x) ds \Bigr ) \\&\qquad \text{(by } \text{ the } \text{ induction } \text{ assumption, } \text{ i.e., }~(10)~\text{ with }~n=m-1). \end{aligned}$$
From (I) and (II) the proof of (i) is completed.
We prove (ii) by induction.
(I’) Initial steps (\(n=0, 1\)): The property (11) is obvious for \(n=0, 1\), cf. (I) in the proof of (i).
(II’) General steps: Let \(m\in \{ 2, \ldots , N_T\}\) and assume that (11) holds true for \(n = m-1\) and \(m-2\), we prove that (11) also does for \(n=m\). From (9b) with \(f=0\), \(g=0\) and the induction assumption, we obtain (11) with \(n=m\) as follows:
$$\begin{aligned} \int _\Omega \phi _h^m dx&= \int _\Omega \Bigl ( \frac{4}{3} \phi _h^{m-1}\circ X_1^m\gamma ^m - \frac{1}{3}\phi _h^{m-2}\circ {\tilde{X}}_1^m {\tilde{\gamma }}^m \Bigr ) dx \\&= \int _\Omega \Bigl ( \frac{4}{3} \phi _h^{m-1} - \frac{1}{3} \phi _h^{m-2} \Bigr ) dx = \int _\Omega \phi _h^0 dx. \end{aligned}$$
From (I’) and (II’) the proof of (ii) is completed. \(\square \)
Proofs of Proposition 2 and Theorem 2
The proofs are given after stating two lemmas on a discrete Gronwall’s inequality and composite functions. The proof of the next lemma is given in Appendix A.1.
Lemma 1
Let \(a_i, i=0,1,2,\) be non-negative numbers with \(a_1 \ge a_2\), and \(\Delta t\in (0, 3/(4a_0)]\). Let \(\{x_n\}_{n\ge 0}\), \(\{y_n\}_{n\ge 1}\), \(\{z_n\}_{n\ge 2}\) and \(\{b_n\}_{n\ge 2}\) be non-negative sequences. Suppose that
$$\begin{aligned} \frac{1}{\Delta t}\Bigl ( \frac{3}{2} x_n - 2 x_{n-1} + \frac{1}{2} x_{n-2} + y_n - y_{n-1} \Bigr ) + z_n \le a_0 x_n + a_1 x_{n-1} + a_2 x_{n-2} + b_n,\quad \forall n\ge 2 \end{aligned}$$
(20)
holds. Then, it holds that
$$\begin{aligned} x_n + \frac{2}{3} y_n + \frac{2}{3}\Delta t\sum _{i=2}^nz_i&\le \Bigl ( \exp ( 2 a_*n\Delta t ) +1 \Bigr ) \Biggl ( x_0 + \frac{3}{2} x_1 + y_1+\Delta t\sum _{i=2}^n b_i \Biggr ), \quad \forall n \ge 2, \end{aligned}$$
(21)
where \(a_*:=a_0+a_1+a_2\).
We recall some results concerning the evaluation of composite functions, which are mainly due to Lemma 4.5 in [1] and Lemma 1 in [15].
Lemma 2
[1, 15, 29, 34] Let a be a function in \(W^{1,\infty }_0(\Omega )^d\) satisfying \(\Delta t \Vert a\Vert _{1,\infty } \le 1/4\) and consider the mapping \(X_1(a,\Delta t)\) defined in (6). Then, the following inequalities hold.
$$\begin{aligned} \Vert \psi \circ X_1(a,\Delta t)\Vert&\le (1 + c_1 \Delta t) \Vert \psi \Vert ,&\forall \psi&\in L^2(\Omega ), \end{aligned}$$
(22a)
$$\begin{aligned} \Vert \psi - \psi \circ X_1(a,\Delta t)\Vert&\le c_0 \Delta t \Vert \psi \Vert _{H^1(\Omega )},&\forall \psi&\in H^1(\Omega ), \end{aligned}$$
(22b)
$$\begin{aligned} \Vert \psi - \psi \circ X_1(a,\Delta t) \Vert _{H^{1}(\Omega )^\prime }&\le c_1 \Delta t \Vert \psi \Vert ,&\forall \psi&\in L^2(\Omega ). \end{aligned}$$
(22c)
Proof of Proposition 2
The equation (9b) can be written as
$$\begin{aligned} \bigl ( {\bar{D}}_{\Delta t}^{(2)}\phi _h^n, \psi _h \bigr ) + a_0(\phi _h^n, \psi _h)&= \langle F^n, \psi _h \rangle + \langle I_h^n, \psi _h \rangle , \quad \forall \psi _h \in \Psi _h \end{aligned}$$
(23)
for \(n \ge 2\), where \(I_h^n \in \Psi _h^\prime \) with the norm \(\Vert \cdot \Vert _{\Psi _h} :=\Vert \cdot \Vert _{\Psi } \ (= \Vert \cdot \Vert _{H^1(\Omega )})\) is defined for \(n \in \{ 2, \ldots , N_T\}\) by
We prove (i). Substituting \(\phi _h^n \in \Psi _h\) into \(\psi _h\) in (23), we have
$$\begin{aligned}&\frac{1}{\Delta t} \Bigl [ \frac{3}{4} \Vert \phi _h^n\Vert ^2 - \Vert \phi _h^{n-1}\Vert ^2 + \frac{1}{4}\Vert \phi _h^{n-2}\Vert ^2 + \frac{1}{2}( \Vert \phi _h^n-\phi _h^{n-1}\Vert ^2-\Vert \phi _h^{n-1} - \phi _h^{n-2}\Vert ^2) \Bigr ]\nonumber \\&\qquad + \frac{\nu }{2} \Vert \nabla \phi _h^n\Vert ^2 \nonumber \\&\quad \le \frac{3}{8} \Vert \phi _h^n\Vert ^2 + c_{1,\nu } \Bigl ( \frac{1}{2} \Vert \phi _h^{n-1}\Vert ^2 + \frac{1}{2} \Vert \phi _h^{n-2}\Vert ^2 \Bigr ) + c_\nu \Vert F^n\Vert _{\Psi _h^\prime }^2 \end{aligned}$$
(24)
from the estimates, thanks to Young’s inequality and an identity in [33] for \(({\bar{D}}_{\Delta t}^{(2)}\phi _h^n, \phi _h^n)\),
$$\begin{aligned} \bigl ( {\bar{D}}_{\Delta t}^{(2)}\phi _h^n, \phi _h^n \bigr )&= \frac{1}{\Delta t} \Bigl [ \frac{3}{4} \Vert \phi _h^n\Vert ^2 - \Vert \phi _h^{n-1}\Vert ^2 + \frac{1}{4} \Vert \phi _h^{n-2}\Vert ^2 + \frac{1}{4} \Vert \phi _h^n-2\phi _h^{n-1}+\phi _h^{n-2}\Vert ^2 \nonumber \\&\qquad + \frac{1}{2} \Bigl ( \Vert \phi _h^n-\phi _h^{n-1}\Vert ^2 - \Vert \phi _h^{n-1}-\phi _h^{n-2}\Vert ^2 \Bigr ) \Bigr ] \nonumber \\&\ge \frac{1}{\Delta t} \Bigl [ \frac{3}{4} \Vert \phi _h^n\Vert ^2 - \Vert \phi _h^{n-1}\Vert ^2 + \frac{1}{4} \Vert \phi _h^{n-2}\Vert ^2 \nonumber \\&\qquad + \frac{1}{2} \Bigl ( \Vert \phi _h^n-\phi _h^{n-1}\Vert ^2 - \Vert \phi _h^{n-1}-\phi _h^{n-2}\Vert ^2 \Bigr ) \Bigr ], \nonumber \\ a_0(\phi _h^n, \phi _h^n)&= \nu \Vert \nabla \phi _h^n\Vert ^2, \nonumber \\ \langle F^n, \phi _h^n \rangle&\le \Vert F^n\Vert _{\Psi _h^\prime } \Vert \phi _h^n\Vert _{H^1(\Omega )} \le \Vert F^n\Vert _{\Psi _h^\prime } (\Vert \phi _h^n\Vert + \Vert \nabla \phi _h^n\Vert ) \nonumber \\&\le \frac{1}{8} \Vert \phi _h^n\Vert ^2 + \frac{\nu }{4}\Vert \nabla \phi _h^n\Vert ^2 + c_\nu \Vert F^n\Vert _{\Psi _h^\prime }^2 \quad (c_\nu = 2 + 1/\nu ), \end{aligned}$$
(25)
$$\begin{aligned} \Vert I_{h1}^n\Vert _{\Psi _h^\prime }&\le \Vert I_{h1}^n\Vert _{H^1(\Omega )^\prime } \le c_1(\Vert \phi _h^{n-1}\Vert +\Vert \phi _h^{n-2}\Vert ) \quad (\text{ by } \text{ Lem. }~2\hbox {-}(22c)), \nonumber \\ \Vert I_{h2}^n\Vert&\le \frac{c}{\Delta t} \Bigl ( \Vert \phi _h^{n-1} \circ X_1^n ( 1 - \gamma ^n ) \Vert + \Vert \phi _h^{n-2} \circ {\tilde{X}}_1^n ( 1 - {\tilde{\gamma }}^n ) \Vert \Bigr ) \nonumber \\&\le c_1 \bigl ( \Vert \phi _h^{n-1} \Vert + \Vert \phi _h^{n-2} \Vert \bigr ) \nonumber \\&\qquad (\text{ by }\, \Vert 1-\gamma \Vert _{C(L^\infty )},\ \Vert 1-{\tilde{\gamma }}\Vert _{C(L^\infty )} \le c_1 \Delta t,\ \ \text{ Lem. }~2\hbox {-}(22a)) \end{aligned}$$
(26)
$$\begin{aligned} \langle I_h^n, \phi _h^n \rangle&\le \Vert I_{h1}^n\Vert _{\Psi _h^\prime } \Vert \phi _h^n \Vert _{\Psi _h} + \Vert I_{h2}^n\Vert \Vert \phi _h^n \Vert \le \Vert I_{h1}^n\Vert _{\Psi _h^\prime } (\Vert \phi _h^n \Vert + \Vert \nabla \phi _h^n \Vert ) + \Vert I_{h2}^n\Vert \Vert \phi _h^n \Vert \nonumber \\&\le \Bigl ( 2 + \frac{1}{\nu } \Bigr ) \Vert I_{h1}^n\Vert _{\Psi _h^\prime }^2 + 2 \Vert I_{h2}^n\Vert ^2 + \frac{1}{4} \Vert \phi _h^n \Vert ^2 + \frac{\nu }{4} \Vert \nabla \phi _h^n \Vert ^2 \nonumber \\&\le \frac{1}{4}\Vert \phi _h^n\Vert ^2 + \frac{\nu }{4} \Vert \nabla \phi _h^n \Vert ^2 + c_{1,\nu } \Bigl ( \frac{1}{2} \Vert \phi _h^{n-1}\Vert ^2 + \frac{1}{2} \Vert \phi _h^{n-2}\Vert ^2 \Bigr ). \end{aligned}$$
(27)
The inequality (24) and Lemma 1 with
$$\begin{aligned} x_n&= \frac{1}{2}\Vert \phi _h^n\Vert ^2,&y_n&= \frac{1}{2}\Vert \phi _h^n-\phi _h^{n-1}\Vert ^2,&z_n&= \frac{\nu }{2} \Vert \nabla \phi _h^n\Vert ^2, \\ a_0&= \frac{3}{4},&a_1&= a_2 = c_{1,\nu },&b_n&= c_\nu \Vert F^n\Vert _{\Psi _h^\prime }^2 \end{aligned}$$
imply
$$\begin{aligned} \max _{n=2,\ldots ,N_T} \Vert \phi _h^n \Vert ^2 + \nu \Delta t\sum _{n=2}^{N_T} \Vert \nabla \phi _h^n \Vert ^2 \le c_{1,\nu ,T} \Bigl [ \Vert \phi _h^0 \Vert ^2 + \Vert \phi _h^1 \Vert ^2 + \Delta t \sum _{n=2}^{N_T} \Vert F^n\Vert _{\Psi _h^\prime }^2 \Bigr ], \end{aligned}$$
which completes the proof of (i).
Next we prove (ii). Substituting \({\bar{D}}_{\Delta t}^{(2)}\phi _h^n \in \Psi _h\) into \(\psi _h\) in (23), we have
$$\begin{aligned}&\frac{\nu }{\Delta t} \biggl [ \frac{3}{4} \Vert \nabla \phi _h^n\Vert ^2 - \Vert \nabla \phi _h^{n-1}\Vert ^2 + \frac{1}{4} \Vert \nabla \phi _h^{n-2}\Vert ^2 + \frac{1}{2} \Bigl ( \Vert \nabla (\phi _h^n-\phi _h^{n-1})\Vert ^2\nonumber \\&\quad - \Vert \nabla (\phi _h^{n-1}-\phi _h^{n-2})\Vert ^2 \Bigr ) \biggr ] \nonumber \\&\quad + \frac{1}{2} \Vert {\bar{D}}_{\Delta t}^{(2)}\phi _h^n \Vert ^2 \le \frac{c_1}{\nu } \biggl ( \frac{\nu }{2} \Vert \nabla \phi _h^{n-1}\Vert ^2 + \frac{\nu }{2} \Vert \nabla \phi _h^{n-2}\Vert ^2 \biggr )\nonumber \\&\quad + \Vert F^n\Vert ^2 + c_1^\prime \sum _{i=1}^2 \Vert \phi _h^{n-i}\Vert ^2 \end{aligned}$$
(28)
from the estimates
$$\begin{aligned} \bigl ( {\bar{D}}_{\Delta t}^{(2)}\phi _h^n, {\bar{D}}_{\Delta t}^{(2)}\phi _h^n \bigr )&= \Vert {\bar{D}}_{\Delta t}^{(2)}\phi _h^n \Vert ^2, \nonumber \\ a_0(\phi _h^n, {\bar{D}}_{\Delta t}^{(2)}\phi _h^n)&= \frac{\nu }{\Delta t} \Bigl [ \frac{3}{4} \Vert \nabla \phi _h^n\Vert ^2 - \Vert \nabla \phi _h^{n-1}\Vert ^2 + \frac{1}{4} \Vert \nabla \phi _h^{n-2}\Vert ^2 \nonumber \\&\quad + \frac{1}{4} \Vert \nabla (\phi _h^n-2\phi _h^{n-1}+\phi _h^{n-2})\Vert ^2 \nonumber \\&\quad + \frac{1}{2} \Bigl ( \Vert \nabla (\phi _h^n-\phi _h^{n-1})\Vert ^2 - \Vert \nabla (\phi _h^{n-1}-\phi _h^{n-2})\Vert ^2 \Bigr ) \Bigr ] \text{(by } \text{ an } \text{ identity } \text{ in } \text{[13]) } \nonumber \\&\ge \frac{\nu }{\Delta t} \Bigl [ \frac{3}{4} \Vert \nabla \phi _h^n\Vert ^2 - \Vert \nabla \phi _h^{n-1}\Vert ^2 + \frac{1}{4} \Vert \nabla \phi _h^{n-2}\Vert ^2 \nonumber \\&\quad + \frac{1}{2} \Bigl ( \Vert \nabla (\phi _h^n-\phi _h^{n-1})\Vert ^2 - \Vert \nabla (\phi _h^{n-1}-\phi _h^{n-2})\Vert ^2 \Bigr ) \Bigr ], \nonumber \\ \langle F^n, {\bar{D}}_{\Delta t}^{(2)}\phi _h^n \rangle&= ( F^n, {\bar{D}}_{\Delta t}^{(2)}\phi _h^n ) \le \Vert F^n\Vert ^2 + \frac{1}{4}\Vert {\bar{D}}_{\Delta t}^{(2)}\phi _h^n\Vert ^2, \nonumber \\ \Vert I_{h1}^n \Vert&\le c_0 ( \Vert \phi _h^{n-1}\Vert _1 + \Vert \phi _h^{n-2}\Vert _1 ) \quad (\text{ by } \text{ Lem. }~2\text{- }(22b)), \nonumber \\ \Vert I_{h2}^n\Vert&\le c_1 \bigl ( \Vert \phi _h^{n-1} \Vert + \Vert \phi _h^{n-2} \Vert \bigr ) \quad (\text{ cf. }~(26)), \nonumber \\ \bigl \langle I_h^n, {\bar{D}}_{\Delta t}^{(2)}\phi _h^n \bigr \rangle&\le \Vert I_h^n\Vert ^2 + \frac{1}{4}\Vert {\bar{D}}_{\Delta t}^{(2)}\phi _h^n\Vert ^2 \le c_1 ( \Vert \phi _h^{n-1}\Vert _1^2 + \Vert \phi _h^{n-2}\Vert _1^2 ) + \frac{1}{4}\Vert {\bar{D}}_{\Delta t}^{(2)}\phi _h^n\Vert ^2 \nonumber \\&= c_1 \Bigl ( \Vert \nabla \phi _h^{n-1}\Vert ^2 + \Vert \nabla \phi _h^{n-2}\Vert ^2 \Bigr ) + c_1^\prime \sum _{i=1}^2 \Vert \phi _h^{n-i}\Vert ^2 + \frac{1}{4}\Vert {\bar{D}}_{\Delta t}^{(2)}\phi _h^n\Vert ^2. \end{aligned}$$
(29)
From the inequality (28), applying Lemma 1 with
$$\begin{aligned} x_n&= \frac{\nu }{2} \Vert \nabla \phi _h^n\Vert ^2,&y_n&= \frac{\nu }{2}\Vert \nabla (\phi _h^n-\phi _h^{n-1})\Vert ^2,&z_n&= \frac{1}{2} \Vert {\bar{D}}_{\Delta t}^{(2)}\phi _h^n\Vert ^2,\\ a_0&= 0,&a_1&= a_2 = \frac{c_1}{\nu },&b_n&= \Vert F^n\Vert ^2 + c_1^\prime \sum _{i=1}^2 \Vert \phi _h^{n-i}\Vert ^2, \end{aligned}$$
and using the result of (i), we obtain
$$\begin{aligned}&\max _{n=2,\ldots ,N_T} \nu \Vert \nabla \phi _h^n \Vert ^2 + \Delta t\sum _{n=2}^{N_T} \Vert {\bar{D}}_{\Delta t}^{(2)} \phi _h^n \Vert ^2\\&\quad \le c_{1,\nu ,T} \left( \Vert \phi _h^0 \Vert _{H^1(\Omega )}^2 + \Vert \phi _h^1 \Vert _{H^1(\Omega )}^2 + \Delta t \sum _{n=2}^{N_T} \Vert F^n \Vert ^2 \right) , \end{aligned}$$
which completes the proof of (ii). \(\square \)
Proof of Theorem 2
We employ Proposition 2 for the proof. For the first step, \(n=1\), scheme (9a) can be written as
$$\begin{aligned} \bigl ( {\bar{D}}_{\Delta t}^{(1)}\phi _h^1, \psi _h \bigr ) + a_0(\phi _h^1, \psi _h)&= \langle F^1, \psi _h \rangle + \langle I_h^1, \psi _h \rangle , \quad \forall \psi _h \in \Psi _h, \end{aligned}$$
(30)
where \(I_h^1 \in \Psi _h^\prime \) is defined by
$$\begin{aligned} I_h^1&:=- \frac{1}{\Delta t} \bigl ( \phi _h^0 - \phi _h^0 \circ X_1^1 \gamma ^1 \bigr ). \end{aligned}$$
We first prove (i). Substituting \(\phi _h^1 \in \Psi _h\) into \(\psi _h\) in (30), and noting that
$$\begin{aligned} \bigl ( {\bar{D}}_{\Delta t}^{(1)}\phi _h^1, \phi _h^1 \bigr )&= \frac{1}{\Delta t} \biggl ( \frac{1}{2} \Vert \phi _h^1\Vert ^2 - \frac{1}{2} \Vert \phi _h^0\Vert ^2 + \frac{1}{2} \Vert \phi _h^1-\phi _h^0\Vert ^2 \biggr ) \ge \frac{1}{\Delta t} \biggl ( \frac{1}{2} \Vert \phi _h^1\Vert ^2 - \frac{1}{2} \Vert \phi _h^0\Vert ^2 \biggr ), \\ a_0(\phi _h^1, \phi _h^1)&= \nu \Vert \nabla \phi _h^1\Vert ^2, \nonumber \\ \langle F^1, \phi _h^1 \rangle&\le \frac{1}{8} \Vert \phi _h^1\Vert ^2 + \frac{\nu }{4}\Vert \nabla \phi _h^1\Vert ^2 + c_\nu \Vert F^1\Vert _{\Psi _h^\prime }^2 \quad (\text{ cf. }~(25)), \nonumber \\ \langle I_h^1, \phi _h^1 \rangle&\le \frac{1}{4}\Vert \phi _h^1\Vert ^2 + \frac{\nu }{4} \Vert \nabla \phi _h^1 \Vert ^2 + \frac{c_{1,\nu }}{2} \Vert \phi _h^0\Vert ^2 \quad (\text{ cf. }~(27)), \end{aligned}$$
we have
$$\begin{aligned} \frac{1}{\Delta t} \biggl ( \frac{1}{2} \Vert \phi _h^1\Vert ^2 - \frac{1}{2} \Vert \phi _h^0\Vert ^2 \biggr ) + \frac{\nu }{2} \Vert \nabla \phi _h^1\Vert ^2&\le \frac{1}{2} \Vert \phi _h^1\Vert ^2 + \frac{c_{1,\nu }}{2} \Vert \phi _h^0\Vert ^2 + c_\nu \Vert F^1\Vert _{\Psi _h^\prime }^2, \end{aligned}$$
which implies
$$\begin{aligned} \Vert \phi _h^1\Vert ^2 + \nu \Delta t \Vert \nabla \phi _h^1\Vert ^2&\le c_{1,\nu } \Bigl ( \Vert \phi _h^0\Vert ^2 + \Delta t \Vert F^1\Vert _{\Psi _h^\prime }^2 \Bigr ). \end{aligned}$$
(31)
The result (14) is obtained by combining (31) with Proposition 2-(i).
We next prove (ii). Substituting \({\bar{D}}_{\Delta t}^{(1)}\phi _h^n \in \Psi _h\) into \(\psi _h\) in (30), and noting that
$$\begin{aligned} \bigl ( {\bar{D}}_{\Delta t}^{(1)}\phi _h^1, {\bar{D}}_{\Delta t}^{(1)}\phi _h^1 \bigr )&= \Vert {\bar{D}}_{\Delta t}^{(1)}\phi _h^1 \Vert ^2, \\ a_0 \bigl ( \phi _h^1, {\bar{D}}_{\Delta t}^{(1)}\phi _h^1 \bigr )&\ge \frac{1}{\Delta t} \biggl ( \frac{\nu }{2} \Vert \nabla \phi _h^1\Vert ^2 - \frac{\nu }{2} \Vert \nabla \phi _h^0\Vert ^2 \biggr ), \\ \langle F^1, {\bar{D}}_{\Delta t}^{(1)}\phi _h^1 \rangle&= (F^1, {\bar{D}}_{\Delta t}^{(1)}\phi _h^1) \le \Vert F^1\Vert ^2 + \frac{1}{4}\Vert {\bar{D}}_{\Delta t}^{(1)}\phi _h^1\Vert ^2, \\ \langle I_h^1, {\bar{D}}_{\Delta t}^{(1)}\phi _h^1 \rangle&\le c_1 \bigl ( \Vert \nabla \phi _h^0\Vert ^2 + \Vert \phi _h^0\Vert ^2 \bigr ) + \frac{1}{4}\Vert {\bar{D}}_{\Delta t}^{(1)}\phi _h^1\Vert ^2 \quad (\text{ cf. }~(29)), \end{aligned}$$
we have
$$\begin{aligned} \frac{1}{\Delta t} \biggl ( \frac{\nu }{2} \Vert \nabla \phi _h^1\Vert ^2 - \frac{\nu }{2} \Vert \nabla \phi _h^0\Vert ^2 \biggr ) + \frac{1}{2} \Vert {\bar{D}}_{\Delta t}^{(1)}\phi _h^1\Vert ^2&\le \frac{c_1}{\nu } \Bigl ( \frac{\nu }{2}\Vert \nabla \phi _h^0 \Vert ^2 \Bigr ) + \Vert F^1\Vert ^2 + c_1^\prime \Vert \phi _h^0\Vert ^2, \end{aligned}$$
which implies
$$\begin{aligned} \nu \Vert \nabla \phi _h^1\Vert ^2 + \Delta t \Vert {\bar{D}}_{\Delta t}^{(1)}\phi _h^1\Vert ^2&\le c_{1,\nu } \Bigl ( \Vert \phi _h^0\Vert _{H^1(\Omega )}^2 + \Delta t \Vert F^1\Vert ^2 \Bigr ), \end{aligned}$$
and, by taking into account (31) with \(g=0\),
$$\begin{aligned} \Vert \phi _h^1\Vert _{H^1(\Omega )}^2 + \Delta t \Vert {\bar{D}}_{\Delta t}^{(1)}\phi _h^1\Vert ^2&\le c_{1,\nu } \Bigl ( \Vert \phi _h^0\Vert _{H^1(\Omega )}^2 + \Delta t \Vert F^1\Vert ^2 \Bigr ). \end{aligned}$$
(32)
The result (15) is obtained by combining (32) with Proposition 2-(ii). \(\square \)
Proof of Theorem 3
Error estimates for the Poisson projection are summarized in the following lemma.
Lemma 3
[12] Let \(\Psi _h\) be the finite element space defined in (5) with polynomial degree \(k\in {\mathbb {N}}\). Then, we have the following.
(i) There exists a positive constant c independent of h such that
$$\begin{aligned} \Vert {\hat{\psi }}_h - \psi \Vert _{H^1(\Omega )} \le c h^k \Vert \psi \Vert _{H^{k+1}(\Omega )}, \quad \forall \psi \in H^{k+1}(\Omega ). \end{aligned}$$
(ii) Under Hypothesis 4, there exists a positive constant \(c^\prime \) independent of h such that
$$\begin{aligned} \Vert {\hat{\psi }}_h - \psi \Vert \le c^\prime h^{k+1} \Vert \psi \Vert _{H^{k+1}(\Omega )}, \quad \forall \psi \in H^{k+1}(\Omega ). \end{aligned}$$
The next lemma shows the truncation error of second order in time for the time-discretization of \(\partial \phi /\partial t + \nabla \cdot ( u\phi )\), and plays an important role in the proof of Theorem 3.
Lemma 4
(truncation error) Suppose that Hypothesis 1 holds true. Assume \(\phi \in Z^3\). Suppose that Hypothesis 2 holds true. Then, there exists a positive constant \(c=c_1\) independent of \(\Delta t\) such that
$$\begin{aligned} \Bigl \Vert {\mathcal {A}}_{\Delta t} \phi ^n - \Bigl [ \frac{\partial {\phi }}{\partial {t}} +\nabla \cdot \bigl ( u\phi \bigr ) \Bigr ] (\cdot ,t^n) \Bigr \Vert \le c \Delta t^{3/2} \Vert \phi \Vert _{Z^3(t^{n-2},t^n)}, \quad n\in \{2, \ldots , N_T\}. \end{aligned}$$
(33)
Proof
Let \(n\in \{2, \ldots , N_T\}\) be fixed arbitrarily. From a simple calculation, the two Jacobians, \(\gamma ^n\) and \({\tilde{\gamma }}^n\), are written as
$$\begin{aligned} \gamma ^n(x)&= 1 - \Delta t \nabla \cdot u^n(x) + \Delta t^2 \delta _1^n(x) + \Delta t^3 \delta _2^n(x), \end{aligned}$$
(34a)
$$\begin{aligned} {\tilde{\gamma }}^n(x)&= 1 - 2\Delta t \nabla \cdot u^n(x) + (2\Delta t)^2 \delta _1^n(x) + (2\Delta t)^3 \delta _2^n(x), \end{aligned}$$
(34b)
where \(\delta _i: \Omega \times (0,T) \rightarrow {\mathbb {R}}\), \(i = 1, 2\), are defined by
$$\begin{aligned} \delta _1&:=\left\{ \begin{aligned}&\ 0,&d&= 1, \\&\frac{\partial {u_1}}{\partial {x_1}} \frac{\partial {u_2}}{\partial {x_2}} - \frac{\partial {u_1}}{\partial {x_2}} \frac{\partial {u_2}}{\partial {x_1}} ,&d&= 2, \\&\frac{\partial {u_1}}{\partial {x_1}} \frac{\partial {u_2}}{\partial {x_2}} + \frac{\partial {u_2}}{\partial {x_2}} \frac{\partial {u_3}}{\partial {x_3}} + \frac{\partial {u_3}}{\partial {x_3}} \frac{\partial {u_1}}{\partial {x_1}} - \frac{\partial {u_1}}{\partial {x_2}} \frac{\partial {u_2}}{\partial {x_1}} - \frac{\partial {u_2}}{\partial {x_3}} \frac{\partial {u_3}}{\partial {x_2}} {- \frac{\partial {u_3}}{\partial {x_1}} \frac{\partial {u_1}}{\partial {x_3}} ,}&d&= 3, \end{aligned} \right. \\ \delta _2&:=\left\{ \begin{aligned}&\ 0,&d&= {1,\,} 2, \\&\quad - \frac{\partial {u_1}}{\partial {x_1}} \frac{\partial {u_2}}{\partial {x_2}} \frac{\partial {u_3}}{\partial {x_3}} - \frac{\partial {u_1}}{\partial {x_2}} \frac{\partial {u_2}}{\partial {x_3}} \frac{\partial {u_3}}{\partial {x_1}} - \frac{\partial {u_1}}{\partial {x_3}} \frac{\partial {u_2}}{\partial {x_1}} \frac{\partial {u_3}}{\partial {x_2}} \\&\quad + \frac{\partial {u_1}}{\partial {x_1}} \frac{\partial {u_2}}{\partial {x_3}} \frac{\partial {u_3}}{\partial {x_2}} + \frac{\partial {u_1}}{\partial {x_3}} \frac{\partial {u_2}}{\partial {x_2}} \frac{\partial {u_3}}{\partial {x_1}} + \frac{\partial {u_1}}{\partial {x_2}} \frac{\partial {u_2}}{\partial {x_1}} \frac{\partial {u_3}}{\partial {x_3}} ,&\quad \ d&= 3, \end{aligned} \right. \end{aligned}$$
with the estimates \(\Vert \delta _i \Vert _{C(L^\infty )} \le c_1\), \(i=1, 2\). The relations (34) imply the key identity
Let us introduce the notations
$$\begin{aligned} y(x,s)&= y(x,s;n) :=X_1 \bigl ( u^n, (1-s)\Delta t \bigr )(x) = x - u^n(x) (1-s)\Delta t, \\ t(s)&= t(s;n) :=t^{n-1}+s\Delta t. \end{aligned}$$
Applying the identities
$$\begin{aligned} \rho ^\prime (1) - \Bigl [ \frac{3}{2}\rho (1)-2\rho (0)+\frac{1}{2}\rho (-1) \Bigr ]&= 2\int _0^1sds\int _{2s-1}^s\rho ^{\prime \prime \prime }(s_1)ds_1,\\ \rho (1)-2\rho (0)+\rho (-1)&= \int _0^1ds\int _{s-1}^s \rho ^{\prime \prime }(s_1)ds_1, \\ \rho (0)-\rho (-1)&= \int _{-1}^0 \rho ^{\prime }(s)ds \end{aligned}$$
for \({\rho } (s) = \phi (y(\cdot ,s),t(s))\) we have the next expressions of \(O(\Delta t^2)\),
$$\begin{aligned} I_1^n (x)&= -2\Delta t^2 \int _0^1 s ds \int _{2s-1}^s \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} +u^n(x)\cdot \nabla \Bigr )^3\phi \Bigr ] \bigl ( y(x,s_1), t(s_1) \bigr ) \, ds_1, \\ I_2^n (x)&= -\Delta t^2 (\nabla \cdot u^n)(x) \int _0^1ds\int _{s-1}^{s} \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} +u^n(x)\cdot \nabla \Bigr )^2\phi \Bigr ] \bigl ( y(x,s_1, t(s_1) \bigr ) \, ds_1, \\ I_3^n (x)&= -2\Delta t^2 \delta _1(x) \int _{-1}^0 \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} +u^n(x)\cdot \nabla \Bigr ) \phi \Bigr ] \bigl ( y(x,s), t(s) \bigr ) \, ds. \end{aligned}$$
We evaluate \(\Vert I_i^n\Vert _{L^2(\Omega )}\), \(i=1,\ldots ,4\), as follows:
$$\begin{aligned} \Vert I_1^n\Vert&= 2\Delta t^2 \biggl \Vert \int _0^1 s ds \int _{2s-1}^s \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} +u^n(\cdot )\cdot \nabla \Bigr )^3\phi \Bigr ] \bigl ( y(\cdot , s_1), t(s_1) \bigr ) \, ds_1 \biggr \Vert \nonumber \\&\le c_0 \Delta t^2 \int _0^1 s ds \int _{2s-1}^s \Bigl \Vert \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} + 1\cdot \nabla \Bigr )^3\phi \Bigr ] \bigl ( y(\cdot , s_1), t(s_1) \bigr ) \Bigr \Vert \, ds_1 \quad \text{( }1\cdot \nabla = \sum _{i=1}^d \frac{\partial {}}{\partial {x_i}} \text{) } \nonumber \\&\le c_1 \Delta t^2 \int _0^1 s ds\int _{2s-1}^s \Bigl \Vert \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} + 1\cdot \nabla \Bigr )^3\phi \Bigr ] \bigl (\, \cdot \, , t(s_1) \bigr ) \Bigr \Vert \, ds_1 \quad (\text{ by } \text{ Prop. }~1) \nonumber \\&\le c_1^\prime \Delta t \int _{t^{n-2}}^{t^n} \Bigl \Vert \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} + 1\cdot \nabla \Bigr )^3\phi \Bigr ] (\, \cdot \, , t) \Bigr \Vert \, dt \nonumber \\&\le \sqrt{2} \, c_1^\prime \Delta t^{3/2} \Bigl \Vert \Bigl ( \frac{\partial {}}{\partial {t}} + 1\cdot \nabla \Bigr )^3\phi \Bigr \Vert _{L^2(t^{n-2},t^n; L^2)} \nonumber \\&\le c_1^{\prime \prime } \Delta t^{3/2} \Vert \phi \Vert _{Z^3(t^{n-2},t^n)}, \end{aligned}$$
(36a)
$$\begin{aligned} \Vert I_2^n\Vert&\le c_1\Delta t^2 \int _0^1ds\int _{s-1}^s \Bigl \Vert \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} + 1\cdot \nabla \Bigr )^2\phi \Bigr ] \bigl ( y(\cdot ,s_1), t(s_1) \bigr ) \Bigr \Vert \, ds_1 \nonumber \\&\le c_1^\prime \Delta t \int _{t^{n-2}}^{t^n} \Bigl \Vert \Bigl [ \Bigl ( \frac{\partial {}}{\partial {t}} + 1\cdot \nabla \Bigr )^2\phi \Bigr ] ( \, \cdot \, , t ) \Bigr \Vert ds_1 \le c_1^{\prime \prime } \Delta t^{3/2} \Vert \phi \Vert _{Z^2(t^{n-2},t^n)}, \end{aligned}$$
(36b)
$$\begin{aligned} \Vert I_3^n\Vert&\le c_1 \Delta t^{3/2} \Vert \phi \Vert _{Z^1(t^{n-2},t^n)}, \end{aligned}$$
(36c)
$$\begin{aligned} \Vert I_4^n\Vert&\le c_1 \Delta t^2 ( \Vert \phi ^{n-1}\Vert + \Vert \phi ^{n-2}\Vert ) \le c_1^\prime \Delta t^{3/2} \Vert \phi \Vert _{H^1(t^{n-2},t^n;L^2)}, \end{aligned}$$
(36d)
where for the last inequality in the estimate of \(\Vert I_4^n\Vert \), we have employed the inequality,
$$\begin{aligned} \Vert \phi ^{n-1}\Vert + \Vert \phi ^{n-2}\Vert \le c\Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-2},t^n;L^2)}. \end{aligned}$$
From the identity (35) and estimates (36), we obtain
$$\begin{aligned} \text{ LHS } \text{ of }~(33)&\le \sum _{i=1}^4 \Vert I_i^n\Vert _{L^2(\Omega )} \le c_1 \Delta t^{3/2} \Vert \phi \Vert _{Z^3(t^{n-2},t^n)}, \end{aligned}$$
which completes the proof. \(\square \)
Remark 6
([35]) For any \(n\in \{1, \ldots , N_T\}\), there exists a positive constant \(c = c_1\) independent of \(\Delta t\) such that
$$\begin{aligned} \biggl \Vert {\mathcal {A}}_{\Delta t}^{(1)} \phi ^n - \Bigl [ \frac{\partial {\phi }}{\partial {t}} +\nabla \cdot \bigl ( u\phi \bigr ) \Bigr ] (\cdot ,t^n) \biggr \Vert \le c \Delta t^{1/2} \Vert \phi \Vert _{Z^2(t^{n-1},t^n)} \ \Bigl ( \le c^\prime \Delta t \Vert \phi \Vert _{Z^3} \Bigr ). \end{aligned}$$
(37)
Remark 7
Lemma 4 and Remark 6 with \(u = 0\) imply that
$$\begin{aligned} \Bigl \Vert {\bar{D}}_{\Delta t}\phi ^n - \frac{\partial {\phi }}{\partial {t}} \Bigr \Vert&\le \left\{ \begin{aligned}&c \Delta t^{1/2} \Vert \phi \Vert _{H^2(t^0,t^1;L^2)} \le c^\prime \Delta t \Vert \phi \Vert _{H^3(0,T;L^2)}&(n = 1), \\&c^{\prime \prime } \Delta t^{3/2} \Vert \phi \Vert _{H^3(t^{n-2},t^n;L^2)}&(n \ge 2). \end{aligned} \right. \end{aligned}$$
Before the proof of Theorem 3, we prepare notations, equations and two lemmas to be employed. Let \(\{\phi (t) = \phi (\cdot ,t) \in \Psi ;\ t\in [0,T]\}\) be the solution to problem (2), and for each \(t\in [0, T]\), let \({\hat{\phi }}_h(t) = {\hat{\phi }}_h (\cdot , t) \in \Psi _h\) be the Poisson projection to \(\phi (t)\), cf. Definition 1. Let \(\{\phi _h^n\}_{n=1}^{N_T} \subset \Psi _h\) be the solution to scheme (9) with \(\phi _h^0 = {\hat{\phi }}_h^0 \in \Psi _h\). We introduce the two functions \(e_h^n\) and \(\eta (t)\) defined by
$$\begin{aligned} e_h^n&:=\phi _h^n - {{\hat{\phi }}}_h^n \in \Psi _h,&\eta (t)&:=\phi (t) - {{\hat{\phi }}}_h (t) \in \Psi \end{aligned}$$
for \(n\in \{0, \ldots , N_T\}\) and \(t\in [0, T]\). Then, the series \(\{e_h^n\}_{n=0}^{N_T} \subset \Psi _h\) satisfies
$$\begin{aligned} \bigl ( {\mathcal {A}}_{\Delta t} e_h^n, \psi _h \bigr ) + a_0( e_h^n, \psi _h ) = \langle R_h^n, \psi _h \rangle , \quad \forall \psi _h \in \Psi _h \end{aligned}$$
(38)
for \(n \in \{ 1, \ldots , N_T \}\), where \(R_h^n \in \Psi _h^\prime \) is defined by
$$\begin{aligned} R_h^n&:=\sum _{i=1}^3 R_{hi}^n, \\ R_{h1}^n&:=\left\{ \begin{aligned}&\frac{\partial {\phi ^n}}{\partial {t}} + \nabla \cdot (u^n\phi ^n) - \frac{\phi _h^n-\phi _h^{n-1}\circ X_1^n \gamma ^n}{\Delta t},&n&= 1,\\&\frac{\partial {\phi ^n}}{\partial {t}} + \nabla \cdot (u^n\phi ^n) - \frac{3\phi _h^n-4\phi _h^{n-1}\circ X_1^n \gamma ^n + \phi _h^{n-2}\circ {\tilde{X}}_1^n {\tilde{\gamma }}^n}{2\Delta t},&n&\ge 2, \end{aligned} \right. \\ R_{h2}^n&:=\left\{ \begin{aligned}&\frac{\eta ^n-\eta ^{n-1}\circ X_1^n \gamma ^n}{\Delta t},&n&= 1, \\&\frac{3\eta ^n-4\eta ^{n-1}\circ X_1^n \gamma ^n + \eta ^{n-2}\circ {\tilde{X}}_1^n {\tilde{\gamma }}^n}{2\Delta t},&n&\ge 2, \end{aligned} \right. \\ R_{h3}^n&:=-\eta ^n. \end{aligned}$$
We summarize some estimates to be used in the proof of Theorem 3 in the next two lemmas. Their proofs are given in Appendix A.2 and A.3. The first lemma provides estimates for \(R_h^n\) and \(\eta ^n\) and the second lemma provides estimates for \(e_h^1\).
Lemma 5
Suppose that Hypotheses 1, 2 and 3 hold true. Assume \(\Delta t \in {(0, 1)}\). Then, we have the following.
(i) It holds that
$$\begin{aligned} \Vert \eta (\cdot ,t)\Vert&\le \Vert \eta (\cdot ,t)\Vert _{H^1(\Omega )} \le c h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-1},t^n; H^{k+1})} \le {c^\prime } h^k \Vert \phi \Vert _{H^2(H^{k+1})} \nonumber \\&\quad {(t\in [t^{n-1},t^n] \cap [0,T], n\in {\mathbb {N}}),} \end{aligned}$$
(39a)
$$\begin{aligned} \Vert {\bar{D}}_{\Delta t}\eta ^n\Vert&\le \left\{ \begin{aligned}&c h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^0,t^1;H^{k+1})}&(n = 1), \\&c^\prime h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-2},t^n;H^{k+1})}&(n \ge 2), \end{aligned} \right. \end{aligned}$$
(39b)
$$\begin{aligned} \Vert R_{h1}^n\Vert _{\Psi _h^\prime }&\le \Vert R_{h1}^n\Vert \le \left\{ \begin{aligned}&c_1 \Delta t^{1/2} \Vert \phi \Vert _{Z^2(t^0,t^1)}&(n = 1), \\&c_1^\prime \Delta t^{3/2} \Vert \phi \Vert _{Z^3(t^{n-2},t^n)}&(n \ge 2), \end{aligned} \right. \end{aligned}$$
(39c)
$$\begin{aligned} \Vert R_{h2}^n\Vert _{\Psi _h^\prime }&\le \left\{ \begin{aligned}&c_1 h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^0,t^1;H^{k+1})}&(n = 1), \\&c_1^\prime h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-2},t^n;H^{k+1})}&(n \ge 2), \end{aligned} \right. \end{aligned}$$
(39d)
$$\begin{aligned} \Vert R_{h3}^n\Vert _{\Psi _h^\prime }&\le \Vert R_{h3}^n\Vert \le c h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-1},t^n; H^{k+1})} \quad (n \ge 1), \end{aligned}$$
(39e)
$$\begin{aligned} \Vert R_{h2}^n\Vert&\le \left\{ \begin{aligned}&c_1 h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^0,t^1;H^{k+1})}&(n = 1), \\&c_1^\prime h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-2},t^n;H^{k+1})}&(n \ge 2). \end{aligned} \right. \end{aligned}$$
(39f)
(ii) Under Hypothesis 4, the estimates of \(\Vert \eta (\cdot ,t)\Vert \), \(\Vert R_{h2}^n\Vert _{\Psi _h^\prime }\) and \(\Vert R_{h3}^n\Vert _{\Psi _h^\prime }\) are given as
$$\begin{aligned} \Vert \eta (\cdot ,t)\Vert&\le c h^{k+1} \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-1},t^n; H^{k+1})} \le {c^\prime } h^{k+1} \Vert \phi \Vert _{H^2(H^{k+1})} \nonumber \\&\quad {(t\in [t^{n-1},t^n] \cap [0,T], n\in {\mathbb {N}}),} \end{aligned}$$
(40a)
$$\begin{aligned} \Vert R_{h2}^n\Vert _{\Psi _h^\prime }&\le \left\{ \begin{aligned}&c_1 h^{k+1} \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^0,t^1;H^{k+1})}&(n = 1), \\&c_1^\prime h^{k+1} \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-2},t^n;H^{k+1})}&(n \ge 2), \end{aligned} \right. \end{aligned}$$
(40b)
$$\begin{aligned} \Vert R_{h3}^n\Vert _{\Psi _h^\prime }&\le \Vert R_{h3}^n\Vert \le c h^{k+1} \Vert \phi \Vert _{H^1(t^{n-1},t^n; H^{k+1})} \quad (n \ge 1). \end{aligned}$$
(40c)
Remark 8
Hypotheses 1 and 2 are not needed for the estimates of (39a), (39b), (39e), (40a) and (40c).
Lemma 6
Suppose that Hypotheses 1, 2 and 3 hold true. Then, we have the following.
$$\begin{aligned} \Vert e_h^1\Vert \le \Vert e_h^1\Vert + \sqrt{\nu \Delta t} \, \Vert \nabla e_h^1\Vert&\le c_1 (\Delta t^2 + h^{k+1}) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})}, \end{aligned}$$
(41a)
$$\begin{aligned} \sqrt{\nu } \, \Vert \nabla e_h^1 \Vert + \sqrt{\Delta t} \, \Vert {\bar{D}}_{\Delta t}^{(1)} e_h^1 \Vert&\le c_1 (\Delta t^{3/2} + h^k) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})}. \end{aligned}$$
(41b)
Now, we give the proof of the error estimates.
Proof of Theorem 3
Considering the equation (38) for \(e_h\), applying Proposition 2-(i) and (ii), and taking into account the fact \(e_h^0 = 0\), we have
$$\begin{aligned} \Vert e_h\Vert _{\ell ^\infty _2(L^2)} + \sqrt{\nu } \Vert \nabla e_h\Vert _{\ell ^2_2(L^2)}&\le c_\dagger \left( \Vert e_h^1\Vert + \Vert R_h\Vert _{\ell ^2_2(\Psi _h^\prime )} \right) , \end{aligned}$$
(42)
$$\begin{aligned} \sqrt{\nu } \Vert \nabla e_h\Vert _{\ell ^\infty _2(L^2)} + \Vert {\bar{D}}_{\Delta t} e_h\Vert _{\ell ^2_2(L^2)}&\le {\bar{c}}_\dagger \left( \Vert e_h^1\Vert _{H^1(\Omega )} + \Vert R_h\Vert _{\ell ^2_2(L^2)} \right) . \end{aligned}$$
(43)
We prove (i). From Lemma 5-(i), it holds that:
$$\begin{aligned} \Vert R_{h1}\Vert _{\ell ^2_2(\Psi _h^\prime )}&\le \Vert R_{h1}\Vert _{\ell ^2_2(L^2)} = \Bigl ( \Delta t \sum _{n=2}^{N_T} \Vert R_{h1}^n\Vert ^2 \Bigr )^{1/2} \le c_1 \Bigl ( \Delta t \sum _{n=2}^{N_T} \Delta t^3 \Vert \phi \Vert _{Z^3(t^{n-2},t^n)}^2 \Bigr )^{1/2} \nonumber \\&\le c_1 \bigl ( 2 \Delta t^4 \Vert \phi \Vert _{Z^3}^2 \bigr )^{1/2} = c_1^\prime \Delta t^2 \Vert \phi \Vert _{Z^3} \quad (c_1^\prime = \sqrt{2}c_1), \nonumber \\ \Vert R_{h2}\Vert _{\ell ^2_2(\Psi _h^\prime )}&= \Bigl ( \Delta t \sum _{n=2}^{N_T} \Vert R_{h2}^n\Vert _{\Psi _h^\prime }^2 \Bigr )^{1/2} \nonumber \\&\le c_1 \Bigl [ \Delta t \sum _{n=2}^{N_T} \bigl ( h^k \Delta t^{-1/2} \Vert \phi \Vert _{H^1(t^{n-2},t^n; H^{k+1})} \bigr )^2 \Bigr ]^{1/2} \nonumber \\&\le c_{1,T} h^k \Vert \phi \Vert _{H^1(H^{k+1})}, \nonumber \\ \Vert R_{h2}\Vert _{\ell ^2_2(L^2)}&= \Bigl ( \Delta t \sum _{n=2}^{N_T} \Vert R_{h2}^n\Vert ^2 \Bigr )^{1/2} \le c_{1,T} h^k \Vert \phi \Vert _{H^1(H^{k+1})}, \nonumber \\ \Vert R_{h3}\Vert _{\ell ^2_2(\Psi _h^\prime )}&\le \Vert R_{h3}\Vert _{\ell ^2_2(L^2)} = \Bigl ( \Delta t \sum _{n=2}^{N_T} \Vert \eta ^n\Vert ^2 \Bigr )^{1/2} \le c \Bigl [ \Delta t \sum _{n=2}^{N_T} \bigl ( h^k \Vert \phi \Vert _{H^1(0,T; H^{k+1}(\Omega ))} \bigr )^2 \Bigr ]^{1/2} \nonumber \\&\le c_T h^k \Vert \phi \Vert _{H^1(H^{k+1})} \quad {(c_T = c T^{1/2})}, \nonumber \\ \Vert R_h\Vert _{\ell ^2_2(\Psi _h^\prime )}&\le \sum _{i=1}^3 \Vert R_{hi}\Vert _{\ell ^2_2(\Psi _h^\prime )} \le c_{1,T} \bigl ( \Delta t^2 + h^k \bigr ) \Vert \phi \Vert _{Z^3\cap H^1(H^{k+1})}, \end{aligned}$$
(44)
$$\begin{aligned} \Vert R_h\Vert _{\ell ^2_2(L^2)}&\le \sum _{i=1}^3 \Vert R_{hi}\Vert _{\ell ^2_2(L^2)} \le c_{1,T} \bigl ( \Delta t^2 + h^k \bigr ) \Vert \phi \Vert _{Z^3\cap H^1(H^{k+1})}. \end{aligned}$$
(45)
Combining (41a) and (44) with (42), we obtain
$$\begin{aligned} \Vert e_h\Vert _{\ell ^\infty (L^2)} + \sqrt{\nu } \, \Vert \nabla e_h\Vert _{\ell ^2(L^2)}&\le \bigl ( \Vert e_h^1\Vert + \sqrt{\nu \Delta t} \, \Vert \nabla e_h^1 \Vert \bigr ) + \Vert e_h\Vert _{\ell ^\infty _2(L^2)} + \sqrt{\nu } \, \Vert \nabla e_h\Vert _{\ell ^2_2(L^2)} \\&\le \bigl ( \Vert e_h^1\Vert + \sqrt{\nu \Delta t} \, \Vert \nabla e_h^1 \Vert \bigr ) + c_\dagger \Bigl ( \Vert e_h^1\Vert + \Vert R_h\Vert _{\ell ^2_2(\Psi _h^\prime )} \Bigr ) \\&\le c_{1,\nu ,T} ( \Delta t^2 + h^k ) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})}, \end{aligned}$$
which implies the error estimate (17a) of (i), as
$$\begin{aligned}&\Vert \phi _h - \phi \Vert _{\ell ^\infty (L^2)} + \sqrt{\nu } \, \Vert \nabla (\phi _h - \phi )\Vert _{\ell ^2(L^2)} \\&\quad \le \Vert e_h \Vert _{\ell ^\infty (L^2)} + \Vert \eta \Vert _{\ell ^\infty (L^2)} + \sqrt{\nu } (\Vert \nabla e_h\Vert _{\ell ^2(L^2)} + \Vert \nabla \eta \Vert _{\ell ^2(L^2)}) \\&\quad \le \Vert e_h \Vert _{\ell ^\infty (L^2)} + \sqrt{\nu } \Vert \nabla e_h\Vert _{\ell ^2(L^2)} + c_T h^k \Vert \phi \Vert _{H^1(H^{k+1})} \quad (\text{ by }~(39a))\nonumber \\&\quad \le c_{1,\nu ,T} ( \Delta t^2 + h^k ) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})}. \end{aligned}$$
For the error estimate (17b), we have
$$\begin{aligned}&\sqrt{\nu } \, \Vert \nabla e_h \Vert _{\ell ^\infty (L^2)} + \bigl \Vert {\bar{D}}_{\Delta t} e_h \bigr \Vert _{\ell ^2(L^2)} \nonumber \\&\quad \le \bigl ( \sqrt{\nu } \, \Vert \nabla e_h^1 \Vert + \sqrt{\Delta t} \, \bigl \Vert {\bar{D}}_{\Delta t}^{(1)}e_h^1 \bigr \Vert \bigr ) + \sqrt{\nu } \, \Vert \nabla e_h \Vert _{\ell ^\infty _2(L^2)} + \bigl \Vert {\bar{D}}_{\Delta t} e_h \bigr \Vert _{\ell ^2_2(L^2)} \nonumber \\&\quad \le \bigl ( \sqrt{\nu } \, \Vert \nabla e_h^1 \Vert + \sqrt{\Delta t} \, \bigl \Vert {\bar{D}}_{\Delta t}^{(1)}e_h^1 \bigr \Vert \bigr ) + {\bar{c}}_\dagger \bigl ( \Vert e_h^1 \Vert _{H^1(\Omega )} + \Vert R_h\Vert _{\ell ^2_2(L^2)} \bigr ) \quad \text{(by }~(36)) \nonumber \\&\quad \le c_{1,\nu ,T} (\Delta t^{3/2} + h^k) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})} \quad \text{(by }~(39a), (39b)\hbox { and}~(47)). \end{aligned}$$
(46)
Noting the estimate
$$\begin{aligned} \Bigl \Vert {\bar{D}}_{\Delta t} \phi - \frac{\partial {\phi }}{\partial {t}} \Bigr \Vert _{\ell ^2(L^2)}&= \sqrt{ \Delta t \, \Bigl \Vert {\bar{D}}_{\Delta t}^{(1)} \phi ^1 - \frac{\partial {\phi ^1}}{\partial {t}} \Bigr \Vert ^2 + \Delta t \sum _{n=2}^{N_T} \Bigl \Vert {\bar{D}}_{\Delta t}^{(2)} \phi ^n - \frac{\partial {\phi ^n}}{\partial {t}} \Bigr \Vert ^2 } \nonumber \\&\le \sqrt{ c (\Delta t^3 + \Delta t^4) \Vert \phi \Vert _{H^3(L^2)}^2 } \qquad (\text{ cf. } \text{ Rmk. }~7) \nonumber \\&\le c^\prime \Delta t^{3/2} \Vert \phi \Vert _{H^3(L^2)}, \end{aligned}$$
(47)
we obtain the estimate (17b) of (i), as
$$\begin{aligned}&\sqrt{\nu } \, \Vert \nabla (\phi _h - \phi ) \Vert _{\ell ^\infty (L^2)} + \Bigl \Vert {\bar{D}}_{\Delta t} \phi _h - \frac{\partial {\phi }}{\partial {t}} \Bigr \Vert _{\ell ^2(L^2)} \\&\quad \le \sqrt{\nu } \, \Bigl ( \Vert \nabla e_h \Vert _{\ell ^\infty (L^2)} + \Vert \nabla \eta \Vert _{\ell ^\infty (L^2)} \Bigr ) + \bigl \Vert {\bar{D}}_{\Delta t} e_h \bigr \Vert _{\ell ^2(L^2)}\\&\qquad + \bigl \Vert {\bar{D}}_{\Delta t} \eta \bigr \Vert _{\ell ^2(L^2)} + \Bigl \Vert {\bar{D}}_{\Delta t} \phi - \frac{\partial {\phi }}{\partial {t}} \Bigr \Vert _{\ell ^2(L^2)} \\&\quad \le c_{1,\nu , T} ( \Delta t^{3/2} + h^k ) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})} + \Bigl \Vert {\bar{D}}_{\Delta t} \phi - \frac{\partial {\phi }}{\partial {t}} \Bigr \Vert _{\ell ^2(L^2)} \quad \text{(by }~(46), (39a)\hbox { and}~(39b)) \\&\le c_{1,\nu , T}^\prime ( \Delta t^{3/2} + h^k ) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})} \quad \text{(by }~(47)). \end{aligned}$$
We next prove (ii). Under Hypothesis 4, we have, from Lemma 5-(ii),
$$\begin{aligned} \Vert R_{h2}\Vert _{\ell ^2_2(\Psi _h^\prime )}&\le c_{1,T} h^{k+1} \Vert \phi \Vert _{H^1(H^{k+1})}, \nonumber \\ \Vert R_{h3}\Vert _{\ell ^2_2(\Psi _h^\prime )}&\le c_T h^{k+1} \Vert \phi \Vert _{H^1(H^{k+1})}, \nonumber \\ \Vert R_h\Vert _{\ell ^2_2(\Psi _h^\prime )}&\le \sum _{i=1}^3 \Vert R_{hi}\Vert _{\ell ^2_2(\Psi _h^\prime )} \le c_{1,T} \bigl ( \Delta t^2 + h^{k+1} \bigr ) \Vert \phi \Vert _{Z^3\cap H^1(H^{k+1})}. \end{aligned}$$
(48)
Combining (41a) and (48) with (42) and taking into account Lemma 3-(ii), we obtain
$$\begin{aligned} \Vert \phi _h - \phi \Vert _{\ell ^\infty (L^2)}&\le \Vert e_h\Vert _{\ell ^\infty (L^2)} + \Vert \eta \Vert _{\ell ^\infty (L^2)} \\&\le \max \bigl \{ \Vert e_h^1\Vert , \Vert e_h\Vert _{\ell ^\infty _2(L^2)} \bigr \} + c h^{k+1} \Vert \phi \Vert _{H^1(H^{k+1})} \\&\le c_{1,\nu ,T} ( \Delta t^2 + h^{k+1} ) \Vert \phi \Vert _{Z^3\cap H^2(H^{k+1})}, \end{aligned}$$
which completes the proof of (ii). \(\square \)