Skip to main content
Log in

An Effective Finite Element Method with Shifted Fractional Powers Bases for Fractional Boundary Value Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an effective finite element method with shifted fractional powers bases is developed for fractional convection diffusion equations involving a Riemann–Liouville derivative of order \(\alpha \in (3/2,2)\). A Petrov-Galerkin variational formulation is constructed on the domain \(\tilde{H}^{\alpha -1}(\Omega )\times \tilde{H}^{1}(\Omega )\), based on which the finite element approximation scheme is developed by employing shifted fractional power functions and continuous piecewise polynomials of degree up to \(m~(m\in \mathbb {N}^+)\) for trial and test finite element spaces, respectively. The approximation property of trial finite element space and \(\inf \)-\(\sup \) condition for discrete variational form are derived, which enables us to derive the error estimates in \(L^2(\Omega )\) and \(H^{\alpha -1}(\Omega )\) norms. Numerical examples are included to verify the theoretical findings and demonstrate an actual convergence rate of order \(\alpha -1+m\), where m equals to 1 or 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37(31), R161–R208 (2004)

    Article  MathSciNet  Google Scholar 

  2. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012)

    Article  MathSciNet  Google Scholar 

  3. Li, Z., Liu, Y., Yamamoto, M.: Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients. Appl. Math. Comput. 257, 381–397 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic press, San Diego, California (1999)

    MATH  Google Scholar 

  5. Pedas, A., Tamme, E.: Piecewise polynomial collocation for linear boundary value problems of fractional differential equations. J. Comput. Appl. Math. 236, 3349–3359 (2012)

    Article  MathSciNet  Google Scholar 

  6. Liang, H., Martin, S.: Collocation methods for general riemann-liouville two-point boundary value problems. Adv. Comput. Math. 45, 897–928 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  8. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  9. Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley, New York (2014)

    Book  Google Scholar 

  10. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)

    Article  MathSciNet  Google Scholar 

  11. Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mao, Z., Chen, S., Shen, J.: Effcient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)

    Article  MathSciNet  Google Scholar 

  13. Sheng, C., Shen, J.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ervin, V., Heuer, N., Roop, J.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87(313), 2273–2294 (2018)

    Article  MathSciNet  Google Scholar 

  15. Mao, Z., Karniadakis, G.E.: A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56(1), 24–49 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)

    Article  MathSciNet  Google Scholar 

  17. Hou, D., Hasan, M.T., Xu, C.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18(1), 43–62 (2018)

    Article  MathSciNet  Google Scholar 

  18. Chen, S., Shen, J.: Log orthogonal functions: approximation properties and applications. IMA J. Numer. Anal. 42(1), 712–743 (2022)

    Article  MathSciNet  Google Scholar 

  19. Chen, S., Shen, J., Zhang, Z., Zhou, Z.: A spectrally accurate approximation to subdiffusion equations using the log orthogonal functions. SIAM J. Sci. Comput. 42(2), A849–A877 (2020)

    Article  MathSciNet  Google Scholar 

  20. Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)

    Article  MathSciNet  Google Scholar 

  21. Zheng, X., Ervin, V.J., Hong, W.: Optimal petrov-galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval. J. Sci. Comput. 86(29), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  Google Scholar 

  23. Zhao, L., Deng, W.: High order finite difference methods on non-uniform meshes for space fractional operators. Adv. Comput. Math. 42(2), 425–468 (2016)

    Article  MathSciNet  Google Scholar 

  24. Duan, B., Zheng, Z.: An exponentially convergent scheme in time for time fractional diffusion equations with non-smooth initial data. J. Sci. Comput. 80(2), 717–742 (2019)

    Article  MathSciNet  Google Scholar 

  25. Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44(3), 745–771 (2018)

    Article  MathSciNet  Google Scholar 

  26. Liang, H., Martin, S.: Collocation methods for general caputo two-point boundary value problems. J. Sci. Comput. 76, 390–425 (2018)

    Article  MathSciNet  Google Scholar 

  27. Jin, B., Zhou, Z.: A finite element method with singularity reconstruction for fractional boundary value problems, ESAIM: Math. Modell. Numer. Anal. 49(5), 1261–1283 (2015)

    Article  Google Scholar 

  28. Jin, B., Lazarov, R., Lu, X., Zhou, Z.: A simple finite element method for boundary value problems with a Riemann-Liouville derivative. J. Comput. Appl. Math. 293, 94–111 (2016)

    Article  MathSciNet  Google Scholar 

  29. Kopteva, N., Stynes, M.: Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem. Adv. Comput. Math. 43(1), 77–99 (2017)

    Article  MathSciNet  Google Scholar 

  30. Cao, W., Zeng, F., Zhang, Z., Karniadakis, G.E.: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions. SIAM J. Sci. Comput. 38(5), A3070–A3093 (2016)

    Article  MathSciNet  Google Scholar 

  31. Ford, N.J., Yan, Y.: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data. Fract. Calculus Appl. Anal. 20(5), 1076–1105 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zeng, F., Mao, Z., Karniadakis, G.E.: A generalized spectral collocation method with tunable accuracy for fractional differential equations with end-point singularities. SIAM J. Sci. Comput. 39(1), A360–A383 (2017)

    Article  MathSciNet  Google Scholar 

  33. Jin, B., Lazarov, R., Zhou, Z.: A Petrov-Galerkin finite element method for fractional convection-diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)

    Article  MathSciNet  Google Scholar 

  34. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA (1985)

    MATH  Google Scholar 

  35. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer Science+Business Media, LLC, New York (2008)

    Book  Google Scholar 

  36. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    Article  MathSciNet  Google Scholar 

  37. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, vol. 159. Springer Science & Business Media, Berlin (2004)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere appreciation to the Editor and two anonymous reviewers for the suggestions and comments which have significantly improved the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T. Fu is supported by the National Natural Science Foundation of China (No. 52101027) and the Science and Technology Innovation Program of Hunan Province (No. 2021RC2001). Y. Xu and C. Du are supported by the Natural Science Foundation of Hunan Provice (No. 2019JJ50755) and Natural Science Foundation of China (No. 51974377).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Du, C. & Xu, Y. An Effective Finite Element Method with Shifted Fractional Powers Bases for Fractional Boundary Value Problems. J Sci Comput 92, 4 (2022). https://doi.org/10.1007/s10915-022-01854-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01854-3

Keywords

Mathematics Subject Classification

Navigation