Skip to main content
Log in

A Non-perturbative Approach to Computing Seismic Normal Modes in Rotating Planets

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A continuous Galerkin method based approach is presented to compute the seismic normal modes of rotating planets. Special care is taken to separate out the essential spectrum in the presence of a fluid outer core using a polynomial filtering eigensolver. The relevant elastic-gravitational system of equations, including the Coriolis force, is subjected to a mixed finite-element method, while self-gravitation is accounted for with the fast multipole method. Our discretization utilizes fully unstructured tetrahedral meshes for both solid and fluid regions. The relevant eigenvalue problem is solved by a combination of several highly parallel and computationally efficient methods. We validate our three-dimensional results in the non-rotating case using analytical results for constant elastic balls, as well as numerical results for an isotropic Earth model from standard “radial” algorithms. We also validate the computations in the rotating case, but only in the slowly-rotating regime where perturbation theory applies, because no other independent algorithms are available in the general case. The algorithm and code are used to compute the point spectra of eigenfrequencies in several Earth and Mars models studying the effects of heterogeneity on a large range of scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The codes are made available via https://github.com/js1019/NormalModes and https://github.com/eigs/pEVSL. The data can be reproduced using the codes in https://github.com/js1019/PlanetaryModels. In addition, the Mars models can be found in [140], where the performance and reproducibility were studied in [125].

References

  1. Akbarashrafi, F., Al-Attar, D., Deuss, A., Trampert, J., Valentine, A.: Exact free oscillation spectra, splitting functions and the resolvability of Earth’s density structure. Geophys. J. Int. 213(1), 58–76 (2018)

    Google Scholar 

  2. Al-Attar, D., Crawford, O., Valentine, A.P., Trampert, J.: Hamilton’s principle and normal mode coupling in an aspherical planet with a fluid core. Geophys. J. Int. 214(1), 485–507 (2018)

    Google Scholar 

  3. Al-Attar, D., Woodhouse, J.H., Deuss, A.: Calculation of normal mode spectra in laterally heterogeneous earth models using an iterative direct solution method. Geophys. J. Int. 189(2), 1038–1046 (2012)

    Google Scholar 

  4. Allen, C.W.: Astrophysical quantities (1973)

  5. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, vol. 9. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  6. Bai, Z., Su, Y.: SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(3), 640–659 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Banerdt, W., Smrekar, S., Lognonné, P., Spohn, T., Asmar, S., Banfield, D., Boschi, L., Christensen, U., Dehant, V., Folkner, W., et al.: InSight: a discovery mission to explore the interior of Mars. In: Lunar and Planetary Science Conference, vol. 44, p. 1915 (2013)

  8. Bataille, K., Flatté, S.M.: Inhomogeneities near the core-mantle boundary inferred from short-period scattered PKP waves recorded at the global digital seismograph network. J. Geophys. Res. Solid Earth 93(B12), 15057–15064 (1988)

    Google Scholar 

  9. Bathe, K.J.: Finite Element Procedures. Klaus-Jurgen Bathe, Berlin (2006)

    MATH  Google Scholar 

  10. Beghein, C., Resovsky, J., Van Der Hilst, R.D.: The signal of mantle anisotropy in the coupling of normal modes. Geophys. J. Int. 175(3), 1209–1234 (2008)

    Google Scholar 

  11. Belleguic, V., Lognonné, P., Wieczorek, M.: Constraints on the Martian lithosphere from gravity and topography data. J. Geophys. Res. Planets 110(E11), 1–22 (2005)

    Google Scholar 

  12. Bermúdez, A., Durán, R., Muschietti, M., Rodríguez, R., Solomin, J.: Finite element vibration analysis of fluid–solid systems without spurious modes. SIAM J. Numer. Anal. 32(4), 1280–1295 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Bermúdez, A., Hervella-Nieto, L., Rodriguez, R.: Finite element computation of three-dimensional elastoacoustic vibrations. J. Sound Vib. 219(2), 279–306 (1999)

    MATH  Google Scholar 

  14. Bermúdez, A., Rodríguez, R.: Finite element computation of the vibration modes of a fluid–solid system. Comput. Methods Appl. Mech. Eng. 119(3), 355–370 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Bills, B.G., Ferrari, A.J.: Mars topography harmonics and geophysical implications. J. Geophys. Res. Solid Earth 83(B7), 3497–3508 (1978)

    Google Scholar 

  16. Bissig, F., Khan, A., Van Driel, M., Stähler, S.C., Giardini, D., Panning, M., Drilleau, M., Lognonné, P., Gudkova, T.V., Zharkov, V.N., et al.: On the detectability and use of normal modes for determining interior structure of Mars. Space Sci. Rev. 214(8), 114 (2018)

    Google Scholar 

  17. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, vol. 15. Springer, Berlin (2012)

    MATH  Google Scholar 

  18. Buland, R., Gilbert, F.: Computation of free oscillations of the Earth. J. Comput. Phys. 54(1), 95–114 (1984)

    MATH  Google Scholar 

  19. Burdick, S., Vernon, F.L., Martynov, V., Eakins, J., Cox, T., Tytell, J., Mulder, T., White, M.C., Astiz, L., Pavlis, G.L., van der Hilst, R.D.: Model update May 2016: upper-mantle heterogeneity beneath North America from travel-time tomography with global and USArray data. Seismol. Res. Lett. 88(2A), 319–325 (2017)

    Google Scholar 

  20. Burnett, D.S.: A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Am. 96(5), 2798–2816 (1994)

    MathSciNet  Google Scholar 

  21. Chaljub, E., Capdeville, Y., Vilotte, J.P.: Solving elastodynamics in a fluid–solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids. J. Comput. Phys. 187(2), 457–491 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Chaljub, E., Komatitsch, D., Vilotte, J.P., Capdeville, Y., Valette, B., Festa, G.: Spectral-element analysis in seismology. Adv. Geophys. 48, 365–419 (2007)

    Google Scholar 

  23. Chaljub, E., Valette, B.: Spectral element modelling of three-dimensional wave propagation in a self-gravitating earth with an arbitrarily stratified outer core. Geophys. J. Int. 158(1), 131–141 (2004)

    Google Scholar 

  24. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Claredon Press, Oxford (2013)

    MATH  Google Scholar 

  25. Chen, H.C., Taylor, R.L.: Vibration analysis of fluid–solid systems using a finite element displacement formulation. Int. J. Numer. Methods Eng. 29(4), 683–698 (1990)

    MATH  Google Scholar 

  26. Clairaut, A.C.: Théorie de la figure de la terre, tirée des principes de l’hydrostatique. chez David fils, libraire, ruë Saint-Jacques à la plume d’or (1743)

  27. Clinton, J.F., Giardini, D., Lognonné, P., Banerdt, B., van Driel, M., Drilleau, M., Murdoch, N., Panning, M., Garcia, R., Mimoun, D., et al.: Preparing for InSight: an invitation to participate in a blind test for martian seismicity. Seismol. Res. Lett. 88, 1290–1302 (2017)

    Google Scholar 

  28. Colombi, A., Nissen-Meyer, T., Boschi, L., Giardini, D.: Seismic waveform inversion for core-mantle boundary topography. Geophys. J. Int. 198(1), 55–71 (2014)

    Google Scholar 

  29. Craggs, A.: The transient response of a coupled plate-acoustic system using plate and acoustic finite elements. J. Sound Vib. 15(4), 509–528 (1971)

    Google Scholar 

  30. Creager, K.C., Jordan, T.H.: Aspherical structure of the core-mantle boundary from PKP travel times. Geophys. Res. Lett. 13(13), 1497–1500 (1986)

    Google Scholar 

  31. Crossley, D., Hinderer, J., Casula, G., Frnacis, O., Hsu, H.T., Imanishi, Y., Jentzsch, G., Kääriänen, J., Merriam, J., Meurers, B., et al.: Network of superconducting gravimeters benefits a number of disciplines. EOS Trans. Am. Geophys. Union 80(11), 121–126 (1999)

    Google Scholar 

  32. Dahlen, F.: The normal modes of a rotating, elliptical earth—II near-resonance multiplet coupling. Geophys. J. Int. 18(4), 397–436 (1969)

    Google Scholar 

  33. Dahlen, F., Sailor, R.: Rotational and elliptical splitting of the free oscillations of the Earth. Geophys. J. Int. 58(3), 609–623 (1979)

    Google Scholar 

  34. Dahlen, F.A.: The normal modes of a rotating, elliptical Earth. Geophys. J. Int. 16(4), 329–367 (1968)

    MATH  Google Scholar 

  35. Dahlen, F.A., Tromp, J.: Theoretical Global Seismology. Princeton University Press, Princeton (1998)

    Google Scholar 

  36. Dai, X., Gong, X., Yang, Z., Zhang, D., Zhou, A.: Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations. Multiscale Model. Simul. 9(1), 208–240 (2011)

    MathSciNet  MATH  Google Scholar 

  37. de Hoop, M.V., Holman, S., Jimbo, S., Nakamura, G.: Characterization of the spectrum of the earth and normal modes (2019) (in preparation)

  38. de Hoop, M.V., Holman, S., Pham, H.: On the system of elastic-gravitational equations describing the oscillations of the earth. arXiv preprint arXiv:1511.03200 (2015)

  39. Deuss, A., Woodhouse, J.: Iteration method to determine the eigenvalues and eigenvectors of a target multiplet including full mode coupling. Geophys. J. Int. 159(1), 326–332 (2004)

    Google Scholar 

  40. Deuss, A., Woodhouse, J.H.: Theoretical free-oscillation spectra: the importance of wide band coupling. Geophys. J. Int. 146(3), 833–842 (2001)

    Google Scholar 

  41. Dollfus, A.: New optical measurements of planetary diameters—part IV: planet Mars. Icarus 17(2), 525–539 (1972)

    Google Scholar 

  42. Doornbos, D., Hilton, T.: Models of the core-mantle boundary and the travel times of internally reflected core phases. J. Geophys. Res. Solid Earth 94(B11), 15741–15751 (1989)

    Google Scholar 

  43. Dziewonski, A., Hales, A., Lapwood, E.: Parametrically simple earth models consistent with geophysical data. Phys. Earth Planet. Inter. 10(1), 12–48 (1975)

    Google Scholar 

  44. Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth Planet. Inter. 25(4), 297–356 (1981)

    Google Scholar 

  45. Earle, P.S., Shearer, P.M.: Observations of PKKP precursors used to estimate small-scale topography on the core-mantle boundary. Science 277(5326), 667–670 (1997)

    Google Scholar 

  46. Earle, P.S., Shearer, P.M.: Observations of high-frequency scattered energy associated with the core phase PKKP. Geophys. Res. Lett. 25(3), 405–408 (1998)

    Google Scholar 

  47. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer, Berlin (2013)

    MATH  Google Scholar 

  48. Everstine, G.C.: A symmetric potential formulation for fluid–structure interaction. J. Sound Vib. 79(1), 157–160 (1981)

    Google Scholar 

  49. Fang, H., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34(4), A2220–A2246 (2012). https://doi.org/10.1137/110836535

    Article  MathSciNet  MATH  Google Scholar 

  50. Garcia, R., Souriau, A.: Amplitude of the core-mantle boundary topography estimated by stochastic analysis of core phases. Phys. Earth Planet. Inter. 117(1–4), 345–359 (2000)

    Google Scholar 

  51. Gharti, H.N., Tromp, J., Zampini, S.: Spectral-infinite-element simulations of gravity anomalies. Geophys. J. Int. 215(2), 1098–1117 (2018)

    Google Scholar 

  52. Gilbert, F., Dziewonski, A.M.: An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 278(1280), 187–269 (1975)

    Google Scholar 

  53. Gimbutas, Z., Greengard, L.: FMMLIB3D 1.2, FORTRAN libraries for fast multiple method in three dimensions (2011)

  54. Goossens, S., Sabaka, T.J., Genova, A., Mazarico, E., Nicholas, J.B., Neumann, G.A.: Evidence for a low bulk crustal density for Mars from gravity and topography. Geophys. Res. Lett. 44(15), 7686–7694 (2017)

    Google Scholar 

  55. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73(2), 325–348 (1987)

    MathSciNet  MATH  Google Scholar 

  56. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numer. 6, 229–269 (1997)

    MathSciNet  MATH  Google Scholar 

  57. Greenspan, H.P.G.: The Theory of Rotating Fluids. Cambridge University Press, Cambridge (1968)

    MATH  Google Scholar 

  58. Häfner, R., Widmer-Schnidrig, R.: Signature of 3-D density structure in spectra of the spheroidal free oscillation \({}_0S_2\). Geophys. J. Int. 192(1), 285–294 (2012)

    Google Scholar 

  59. Hamdi, M.A., Ousset, Y., Verchery, G.: A displacement method for the analysis of vibrations of coupled fluid-structure systems. Int. J. Numer. Methods Eng. 13(1), 139–150 (1978)

    MATH  Google Scholar 

  60. Hara, T., Tsuboi, S., Geller, R.J.: Inversion for laterally heterogeneous earth structure using a laterally heterogeneous starting model: preliminary results. Geophys. J. Int. 104(3), 523–540 (1991)

    Google Scholar 

  61. Hara, T., Tsuboi, S., Geller, R.J.: Inversion for laterally heterogeneous upper mantle S-wave velocity structure using iterative waveform inversion. Geophys. J. Int. 115(3), 667–698 (1993)

    Google Scholar 

  62. Hesthaven, J.S., Warburton, T.: High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Philos. Trans. R. Soc. Lond. Ser. A 362(1816), 493–524 (2004)

    MathSciNet  MATH  Google Scholar 

  63. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, vol. 54. Springer, Berlin (2007)

    MATH  Google Scholar 

  64. Hoffnung, L., Li, R.C., Ye, Q.: Krylov type subspace methods for matrix polynomials. Linear Algebra Appl. 415(1), 52–81 (2006)

    MathSciNet  MATH  Google Scholar 

  65. Holz, U.B., Golub, G.H., Law, K.H.: A subspace approximation method for the quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl. 26(2), 498–521 (2004)

    MathSciNet  MATH  Google Scholar 

  66. Hubbard, W.B.: Concentric Maclaurin spheroid models of rotating liquid planets. Astrophys. J. 768(1), 43 (2013)

    Google Scholar 

  67. Hughes, T.J.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation, Chelmsford (2012)

    Google Scholar 

  68. Irving, J., Deuss, A., Woodhouse, J.: Normal mode coupling due to hemispherical anisotropic structure in Earth’s inner core. Geophys. J. Int. 178(2), 962–975 (2009)

    Google Scholar 

  69. Irving, J.C., Cottaar, S., Lekić, V.: Seismically determined elastic parameters for Earth’s outer core. Sci. Adv. 4(6), eaar2538 (2018)

    Google Scholar 

  70. Jeans, J.: Problems of Cosmogony and Stellar Dynamics. Cambridge University Press, Cambridge (1919)

    MATH  Google Scholar 

  71. Kennett, B.: On the density distribution within the Earth. Geophys. J. Int. 132(2), 374–382 (1998)

    Google Scholar 

  72. Kennett, B.L., Engdahl, E., Buland, R.: Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int. 122(1), 108–124 (1995)

    Google Scholar 

  73. Khan, A., van Driel, M., Böse, M., Giardini, D., Ceylan, S., Yan, J., Clinton, J., Euchner, F., Lognonné, P., Murdoch, N., et al.: Single-station and single-event Marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016)

    Google Scholar 

  74. Kiefling, L., Feng, G.: Fluid-structure finite element vibrational analysis. AIAA J. 14(2), 199–203 (1976)

    MathSciNet  MATH  Google Scholar 

  75. Koelemeijer, P., Deuss, A., Trampert, J.: Normal mode sensitivity to Earth’s D’’ layer and topography on the core-mantle boundary: what we can and cannot see. Geophys. J. Int. 190(1), 553–568 (2012)

    Google Scholar 

  76. Kolev, T., Pazner, W.: Conservative and accurate solution transfer between high-order and low-order refined finite element spaces. SIAM J. Sci. Comput. 44(1), A1–A27 (2022)

    MathSciNet  MATH  Google Scholar 

  77. Komatitsch, D., Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys. J. Int. 139(3), 806–822 (1999)

    Google Scholar 

  78. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation—I. Validation. Geophys. J. Int. 149(2), 390–412 (2002)

    Google Scholar 

  79. Komatitsch, D., Tromp, J.: Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models, oceans, rotation and self-gravitation. Geophys. J. Int. 150(1), 303–318 (2002)

    Google Scholar 

  80. Komatitsch, D., Vilotte, J.P.: The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)

    MATH  Google Scholar 

  81. Laske, G., Masters, G., Ma, Z., Pasyanos, M.: Update on CRUST1. 0-A 1-degree global model of Earth’s crust. In: Geophysical Research Abstracts, vol. 15, p. 2658. EGU General Assembly Vienna, Austria (2013)

  82. Lassak, T.M., McNamara, A.K., Garnero, E.J., Zhong, S.: Core-mantle boundary topography as a possible constraint on lower mantle chemistry and dynamics. Earth Planet. Sci. Lett. 289(1–2), 232–241 (2010)

    Google Scholar 

  83. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, vol. 6. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  84. Li, R., Xi, Y., Erlandson, L., Saad, Y.: The Eigenvalues Slicing Library (EVSL): algorithms, implementation, and software. SIAM J. Sci. Comput. 41(4), C393–C415 (2019). https://doi.org/10.1137/18M1170935

    Article  MathSciNet  MATH  Google Scholar 

  85. Li, R., Xi, Y., Vecharynski, E., Yang, C., Saad, Y.: A thick-restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput. 38(4), A2512–A2534 (2016). https://doi.org/10.1137/15M1054493

    Article  MathSciNet  MATH  Google Scholar 

  86. Lodders, K., Fegley, B.: The Planetary Scientist’s Companion. Oxford University Press on Demand, Oxford (1998)

    Google Scholar 

  87. Lognonné, P.: Normal modes and seismograms in an anelastic rotating Earth. J. Geophys. Res. Solid Earth 96(B12), 20309–20319 (1991)

    Google Scholar 

  88. Lognonné, P.: Planetary seismology. Annu. Rev. Earth Planet. Sci. 33, 571–604 (2005)

    Google Scholar 

  89. Lognonné, P., Banerdt, W.B., Giardini, D., Pike, W., Christensen, U., Laudet, P., De Raucourt, S., Zweifel, P., Calcutt, S., Bierwirth, M., et al.: SEIS: insight’s seismic experiment for internal structure of Mars. Space Sci. Rev. 215(1), 12 (2019)

    Google Scholar 

  90. Lognonné, P., Romanowicz, B.: Modelling of coupled normal modes of the Earth: the spectral method. Geophys. J. Int. 102(2), 365–395 (1990)

    MATH  Google Scholar 

  91. Masters, G., Barmine, M., Kientz, S.: Mineos: User Manual Version 1.0.2. California Institute of Technology, Pasadena (2011)

    Google Scholar 

  92. Matchette-Downes, H., Shi, J., Ye, J., Han, J., van der Hilst, R.D., de Hoop, M.V.: Mixed Rayleigh–Stoneley modes: analysis of seismic waveguide coupling and sensitivity to lower-mantle structures (2021) (submitted)

  93. Melenk, J.M.: On condition numbers in hp-FEM with Gauss–Lobatto-based shape functions. J. Comput. Appl. Math. 139(1), 21–48 (2002)

    MathSciNet  MATH  Google Scholar 

  94. Militzer, B., Soubiran, F., Wahl, S.M., Hubbard, W.: Understanding Jupiter’s interior. J. Geophys. Res. Planets 121(9), 1552–1572 (2016)

    Google Scholar 

  95. Militzer, B., Wahl, S., Hubbard, W.: Models of Saturn’s interior constructed with an accelerated concentric Maclaurin spheroid method. Astrophys. J. 879(2), 78 (2019)

    Google Scholar 

  96. Millot-Langet, R., Clévédé, E., Lognonné, P.: Normal modes and long period seismograms in a 3D 1261 anelastic elliptical rotating Earth. Geophys. Res. Lett. 30(5), 1202. https://doi.org/10.1029/2002GL016257

  97. Morelli, A., Dziewonski, A.M.: Topography of the core-mantle boundary and lateral homogeneity of the liquid core. Nature 325(6106), 678 (1987)

    Google Scholar 

  98. Morelli, A., Dziewonski, A.M.: Body wave traveltimes and a spherically symmetric P-and S-wave velocity model. Geophys. J. Int. 112(2), 178–194 (1993)

    Google Scholar 

  99. Motamarri, P., Nowak, M.R., Leiter, K., Knap, J., Gavini, V.: Higher-order adaptive finite-element methods for Kohn–Sham density functional theory. J. Comput. Phys. 253, 308–343 (2013)

    MathSciNet  MATH  Google Scholar 

  100. Nader, M., Igel, H., Ferreira, A., Al-Attar, D., Wassermann, J., Schreiber, K.: Normal mode coupling observations with a rotation sensor. Geophys. J. Int. 201(3), 1482–1490 (2015)

    Google Scholar 

  101. Nissen-Meyer, T., Fournier, A., Dahlen, F.: A 2-D spectral-element method for computing spherical-earth seismograms—II. Waves in solid–fluid media. Geophys. J. Int. 174(3), 873–888 (2008)

    Google Scholar 

  102. Obayashi, M., Fukao, Y.: P and PcP travel time tomography for the core-mantle boundary. J. Geophys. Res. Solid Earth 102(B8), 17825–17841 (1997)

    Google Scholar 

  103. Olson, L.G., Bathe, K.J.: A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems. Nucl. Eng. Des. 76(2), 137–151 (1983)

    Google Scholar 

  104. Olson, L.G., Bathe, K.J.: Analysis of fluid-structure interactions. a direct symmetric coupled formulation based on the fluid velocity potential. Comput. Struct. 21(1), 21–32 (1985)

    MATH  Google Scholar 

  105. Panning, M.P., Lognonné, P., Banerdt, W.B., Garcia, R., Golombek, M., Kedar, S., Knapmeyer-Endrun, B., Mocquet, A., Teanby, N.A., Tromp, J., et al.: Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211(1–4), 611–650 (2017)

    Google Scholar 

  106. Park, J.: Synthetic seismograms from coupled free oscillations: effects of lateral structure and rotation. J. Geophys. Res. Solid Earth 91(B6), 6441–6464 (1986)

    Google Scholar 

  107. Park, J.: The subspace projection method for constructing coupled-mode synthetic seismograms. Geophys. J. Int. 101(1), 111–123 (1990)

    Google Scholar 

  108. Park, J., Song, T.R.A., Tromp, J., Okal, E., Stein, S., Roult, G., Clevede, E., Laske, G., Kanamori, H., Davis, P., et al.: Earth’s free oscillations excited by the 26 December 2004 Sumatra–Andaman earthquake. Science 308(5725), 1139–1144 (2005)

    Google Scholar 

  109. Parlett, B.N.: The Symmetric Eigenvalue Problem. No. 20 in Classics in Applied Mathematics. SIAM, Philadelphia (1998)

    Google Scholar 

  110. Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329–345 (2004)

    MathSciNet  MATH  Google Scholar 

  111. Pulliam, R.J., Stark, P.B.: Bumps on the core-mantle boundary: Are they facts or artifacts? J. Geophys. Res. Solid Earth 98(B2), 1943–1955 (1993)

    Google Scholar 

  112. Rivoldini, A., Van Hoolst, T., Verhoeven, O., Mocquet, A., Dehant, V.: Geodesy constraints on the interior structure and composition of mars. Icarus 213(2), 451–472 (2011)

    Google Scholar 

  113. Rodgers, A., Wahr, J.: Inference of core-mantle boundary topography from ISC PcP and PKP traveltimes. Geophys. J. Int. 115(3), 991–1011 (1993)

    Google Scholar 

  114. Romanowicz, B.: Multiplet–multiplet coupling due to lateral heterogeneity: asymptotic effects on the amplitude and frequency of the Earth’s normal modes. Geophys. J. Int. 90(1), 75–100 (1987)

    Google Scholar 

  115. Romanowicz, B., Mitchell, B.: 1.21—Deep Earth structure Q of the Earth from crust to core. Treatise Geophys. 1, 731–774 (2007)

    Google Scholar 

  116. Romanowicz, B.A., Panning, M.P., Gung, Y., Capdeville, Y.: On the computation of long period seismograms in a 3-D earth using normal mode based approximations. Geophys. J. Int. 175(2), 520–536 (2008)

    Google Scholar 

  117. Rosat, S., Hinderer, J., Crossley, D., Rivera, L.: The search for the Slichter mode: comparison of noise levels of superconducting gravimeters and investigation of a stacking method. Phys. Earth Planet. Inter. 140(1–3), 183–202 (2003)

    Google Scholar 

  118. Roult, G., Roch, J., Clévédé, E.: Observation of split modes from the 26th December 2004 Sumatra–Andaman mega-event. Phys. Earth Planet. Inter. 179(1–2), 45–59 (2010)

    Google Scholar 

  119. Saad, Y.: Filtered conjugate residual-type algorithms with applications. SIAM J. Matrix Anal. Appl. 28(3), 845–870 (2006). https://doi.org/10.1137/060648945

    Article  MathSciNet  MATH  Google Scholar 

  120. Saad, Y.: Numerical Methods for Large Eigenvalue Problems: Revised Edition, vol. 66. SIAM, Philadelphia (2011)

    MATH  Google Scholar 

  121. Schimmel, M., Stutzmann, E., Ventosa, S.: Low-frequency ambient noise autocorrelations: waveforms and normal modes. Seismol. Res. Lett. 89(4), 1488–1496 (2018)

    Google Scholar 

  122. Schlaphorst, D., Thomas, C., Holme, R., Abreu, R.: Investigation of core-mantle boundary topography and lowermost mantle with P4KP waves. Geophys. J. Int. 204(2), 1060–1071 (2015)

    Google Scholar 

  123. Shen, J.: Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15(6), 1489–1505 (1994)

    MathSciNet  MATH  Google Scholar 

  124. Shi, J., Li, R., Xi, Y., Saad, Y., de Hoop, M.V.: Computing planetary interior normal modes with a highly parallel polynomial filtering eigensolver. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis, SC’18, Dallas, TX, USA, November 11–16, 2018, pp. 71:1–71:13 (2018). http://dl.acm.org/citation.cfm?id=3291751

  125. Shi, J., Li, R., Xi, Y., Saad, Y., de Hoop, M.V.: Planetary normal mode computation: Parallel algorithms, performance, and reproducibility. IEEE Trans. Parallel Distrib. Syst. 32(11), 2609–2622 (2021)

    Google Scholar 

  126. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. (TOMS) 41(2), 11 (2015)

    MathSciNet  MATH  Google Scholar 

  127. Sleijpen, G.L., Booten, A.G., Fokkema, D.R., Van der Vorst, H.A.: Jacobi–Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT Numer. Math. 36(3), 595–633 (1996)

    MathSciNet  MATH  Google Scholar 

  128. Sleijpen, G.L., Van der Vorst, H.A., Gijzen, M.: Quadratic eigenproblems are no problem. SIAM News 29(7), 8–9 (1996)

    Google Scholar 

  129. Slichter, L.B.: The fundamental free mode of the Earth’s inner core. Proc. Natl. Acad. Sci. 47(2), 186–190 (1961)

    Google Scholar 

  130. Smith, D.E., Zuber, M.T., Solomon, S.C., Phillips, R.J., Head, J.W., Garvin, J.B., Banerdt, W.B., Muhleman, D.O., Pettengill, G.H., Neumann, G.A., et al.: The global topography of Mars and implications for surface evolution. Science 284(5419), 1495–1503 (1999)

    Google Scholar 

  131. Sze, E.K., van der Hilst, R.D.: Core mantle boundary topography from short period PcP, PKP, and PKKP data. Phys. Earth Planet. Inter. 135(1), 27–46 (2003)

    Google Scholar 

  132. Tanaka, S.: Constraints on the core-mantle boundary topography from P4KP-PcP differential travel times. J. Geophys. Res. Solid Earth 115(B4) (2010)

  133. Tassoul, J.L.: Theory of Rotating Stars.(PSA-1), vol. 1. Princeton University Press, Princeton (2015)

    Google Scholar 

  134. Um, J., Dahlen, F., Park, J.: Normal mode multiplet coupling along a dispersion branch. Geophys. J. Int. 106(1), 11–35 (1991)

    Google Scholar 

  135. van Driel, M., Ceylan, S., Clinton, J.F., Giardini, D., Alemany, H., Allam, A., Ambrois, D., Balestra, J., Banerdt, B., Becker, D., et al.: Preparing for InSight: evaluation of the blind test for Martian seismicity. Seismol. Res. Lett. 60, 1518–1534 (2019)

    Google Scholar 

  136. Valette, B.: Spectre des vibrations propres d’un corps élastique, auto-gravitant, en rotation uniforme et contenant une partie fluide. CR Acad. Sci. Paris 309(Série I), 419–422 (1989)

    MATH  Google Scholar 

  137. Van Camp, M.: Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet. Inter. 116(1–4), 81–92 (1999)

    Google Scholar 

  138. Wahl, S.M., Thorngren, D., Lu, T., Militzer, B.: Tidal response and shape of hot Jupiters

  139. Wang, X., Bathe, K.J.: Displacement/pressure based mixed finite element formulations for acoustic fluid-structure interaction problems. Int. J. Numer. Methods Eng. 40(11), 2001–2017 (1997)

    MATH  Google Scholar 

  140. Weakley, L.M., Shi, J., Michael, S., Li, R., Xi, Y., Saad, Y., de Hoop, M.: Mars and moon models used for the reproducibility challenge of the student cluster competition at the sc19 conference (2020). https://doi.org/10.21227/agwx-jd58

  141. Widmer-Schnidrig, R.: What can superconducting gravimeters contribute to normal-mode seismology? Bull. Seismol. Soc. Am. 93(3), 1370–1380 (2003)

    Google Scholar 

  142. Woodhouse, J.: The coupling and attenuation of nearly resonant multiplets in the Earth’s free oscillation spectrum. Geophys. J. Int. 61(2), 261–283 (1980)

    Google Scholar 

  143. Woodhouse, J.H.: The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun. In: Doornbos, D.J. (ed.) Seismological Algorithms: Computational Methods and Computer Programs, pp. 321–370. Academic Press, London, UK (1988)

    Google Scholar 

  144. Woodhouse, J., Dahlen, F.: The effect of a general aspherical perturbation on the free oscillations of the Earth. Geophys. J. R. Astron. Soc. 53(2), 335–354 (1978)

    MATH  Google Scholar 

  145. Woodhouse, J., Deuss, A.: Theory and observations—Earth’s free oscillations. Seismol. Struct. Earth Treat. Geophys. 1, 31–65 (2007)

    Google Scholar 

  146. Yang, H.Y., Tromp, J.: Synthetic free-oscillation spectra: an appraisal of various mode-coupling methods. Geophys. J. Int. 203(2), 1179–1192 (2015)

    Google Scholar 

  147. Ye, J.: Revisiting the computation of normal modes in SNREI models of planets—close eigenfrequencies. Master’s thesis, Rice University (2018)

  148. Yokota, R.: An FMM based on dual tree traversal for many-core architectures. J. Algorithms Comput. Technol. 7(3), 301–324 (2013)

    Google Scholar 

  149. Zhang, K., Liao, X.: Theory and Modeling of Rotating Fluids: Convection, Inertial Waves and Precession. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  150. Zienkiewicz, O., Bettess, P.: Fluid-structure dynamic interaction and wave forces. An introduction to numerical treatment. Int. J. Numer. Methods Eng. 13(1), 1–16 (1978)

    MATH  Google Scholar 

  151. Zienkiewicz, O., Emson, C., Bettess, P.: A novel boundary infinite element. Int. J. Numer. Methods Eng. 19(3), 393–404 (1983)

    MathSciNet  MATH  Google Scholar 

  152. Zienkiewicz, O.C., Newton, R.E.: Coupled vibrations of a structure submerged in a compressible fluid (1969)

  153. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  154. Zuber, M.T., Smith, D., Solomon, S., Muhleman, D., Head, J., Garvin, J., Abshire, J., Bufton, J.: The Mars Observer laser altimeter investigation. J. Geophys. Res. Planets 97(E5), 7781–7797 (1992)

    Google Scholar 

  155. Zürn, W., Laske, G., Widmer-Schnidrig, R., Gilbert, F.: Observation of Coriolis coupled modes below 1 mHz. Geophys. J. Int. 143(1), 113–118 (2000)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Bernard Valette and anonymous referees for their thoughtful comments. J.S. would like to thank Petroleum Geo-Services for using their supercomputer Abel, Danny Sorensen, Ruichao Ye, Harry Matchette-Downes, Anton Ermakov, and Burkhard Militzer for helpful discussions.

Funding

This research was supported by the Simons Foundation under the MATH+X program, the National Science Foundation Grant DMS-1815143, the members of the Geo-Mathematical Imaging Group at Rice University, and XSEDE research allocation TG-EAR170019. The work by R.L. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-780818). Y.X. and Y.S. were supported by NSF-1812695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Shi.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Construction of Orthonormal Bases and Submatrices

Here, we introduce three-dimensional polynomial bases \(\{ \psi _n^s \}_{n=1}^{N_{p^s}}\), \(\{ \psi _n^f \}_{n=1}^{N_{p^f}}\) and \(\{ \psi _n^p \}_{n=1}^{N_{p^p}}\) while addressing the fact that the Lagrange polynomials are not orthogonal to one another. We suppress superscripts s, f, p in the notation in the remainder of this subsection. To simplify the computations, we introduce reference volume and boundary elements. That is, we introduce a mapping that connects any element K to the reference tetrahedron defined by

$$\begin{aligned} {\mathbf {I}} = \{ r = (r_1,r_2,r_3)\ :\ r_1 \ge -1 ,\ r_2 \ge -1 ,\ r_3 \ge -1,\ r_1 + r_2 + r_3 \le -1 \} . \end{aligned}$$

Likewise, we introduce a mapping that connects any boundary element E to the reference triangle defined by

$$\begin{aligned} {\mathbf {I}}_{2D} = \{ t = (t_1,t_2)\ :\ t_1 \ge -1 ,\ t_2 \ge -1 ,\ t_1 + t_2 \le 0 \} . \end{aligned}$$

We note that any two tetrahedra are connected through an affine transformation, \(x \rightarrow r\), with a constant Jacobian, J, which is the determinant of \((\partial _r x)\). For the local approximation on the reference element \({\mathbf {I}}\), we have

$$\begin{aligned} u_j(r) = \sum _{n=1}^{N_p} ({\hat{u}}_j)_n \psi _n(r) = \sum _{i=1}^{N_p} u_j(r_i) \ell _i(r) . \end{aligned}$$

The vector fields are treated component-wise in our discretization. This yields the expression \({\mathcal {V}} {\hat{u}}_j = u_j\), where the generalized Vandermonde matrix takes the form of \({\mathcal {V}}_{in} = \psi _n(r_i)\) with in as indices of nodal points. Here, \(\{\psi _n \}\) is a polynomial basis that is orthonormal on \({\mathbf {I}}\). We later introduce submatrices of \({\mathcal {V}}\). We then evaluate derivatives and mass matrices according to

$$\begin{aligned} \partial _{x_i} = (\partial _{x_i} r_j) {\mathcal {D}}_{j} , \quad {\mathcal {D}}_{j} = (\partial _{r_j} {\mathcal {V}}) {\mathcal {V}}^{-1} , \quad {\mathcal {M}} = {\mathcal {V}}^{-T} {\mathcal {V}}^{-1} , \end{aligned}$$

where \({\mathcal {D}}_j\) and \({\mathcal {M}}\) are the derivative matrix and the mass matrix on the reference tetrahedron. More details of the constructions of J, \({\mathcal {V}}\), \({\mathcal {D}}_j\) and \({\mathcal {M}}\) can be found in [63, Chapter 10.1]. Thus, we introduce

$$\begin{aligned} {\mathcal {V}}_s ,\ {\mathcal {V}}_f ,\ {\mathcal {V}}_p, \quad {\mathcal {M}}_s ,\ {\mathcal {M}}_f ,\ {\mathcal {M}}_p \quad \text {and}\quad {\mathcal {D}}_j^s ,\ {\mathcal {D}}_j^f ,\ {\mathcal {D}}_j^p. \end{aligned}$$

We employ the notation

$$\begin{aligned} {\mathsf {D}}^s_i = (\partial _{x_i} r_j) {\mathcal {D}}^s_j ,\quad {\mathsf {D}}^f_i = (\partial _{x_i} r_j) {\mathcal {D}}^f_j ,\quad {\mathsf {D}}^p_i = (\partial _{x_i} r_j) {\mathcal {D}}^p_j , \end{aligned}$$

reflecting the mapping of the derivatives from the reference tetrahedron to the target element. We follow a similar approach for boundary elements and introduce

$$\begin{aligned} {\mathcal {M}}_s^{2D}, \ {\mathcal {M}}_f^{2D} \quad \text {and}\quad J^{2D}, \end{aligned}$$

where \({\mathcal {M}}_s^{2D}\) and \({\mathcal {M}}_f^{2D}\) are the mass matrices for solid and fluid boundary elements, respectively; \(J^{2D}\) denotes the Jacobian, which is the determinant of \((\partial _t x)\) on the boundary element. The construction of the mass matrices \({\mathcal {M}}^{2D}_s\) and \({\mathcal {M}}^{2D}_f\) on the reference triangle \({\mathbf {I}}_{2D}\) is similar to the construction of \({\mathcal {M}}\) [63, Chapter 6.1].

1.1 Submatrices: \(A_{sg}\), \(A_f\), \(A_p\), \(M_s\), \(M_f\), \(R_s\) and \(R_f\)

We extract \({\tilde{u}}^s |_{K_k}\), \({\tilde{u}}^f |_{K_k}\) and \({\tilde{p}} |_{K_k}\) from \({\tilde{u}}^s\), \({\tilde{u}}^f\) and \({\tilde{p}}\), respectively, by restricting the nodes to the ones of element \(K_k\). In a similar fashion, we extract \({\tilde{v}}^s |_{K_k}\), \({\tilde{v}}^f |_{K_k}\) and \({\tilde{v}}^p |_{K_k}\) on any element \(K_k\). For the evaluation of matrix \(A_{sg}\) in Table 3 we need to evaluate the submatrices on element \(K_k\) through

$$\begin{aligned} \int _{K_k^{\text {S}}} \partial _{x_i} ({\overline{v}}^s_h)_j (c_{ijmn} \partial _{x_m} (u^s_h)_n) \,\mathrm {d}x&= ({\tilde{v}}^s_j|_{K_k})^{{\mathsf {H}}}[ J_k ({\mathsf {D}}_i^s)^{{\mathsf {T}}}c^{k}_{ijmn} {\mathcal {M}}_s {\mathsf {D}}_m^s ] {\tilde{u}}^s_n|_{K_k} , \end{aligned}$$
(61)
$$\begin{aligned} \int _{K_k^{\text {S}}} \partial _{x_i} ({\overline{v}}^s_h)_i g'_j (u^s_h)_j \rho ^0 \,\mathrm {d}x&= ({\tilde{v}}^s_i|_{K_k})^{{\mathsf {H}}}[ J_k ({\mathsf {D}}_i^s)^{{\mathsf {T}}}\rho ^0_k {\mathcal {M}}_s D_{g'_j} ] {\tilde{u}}^s_j|_{K_k} , \end{aligned}$$
(62)
$$\begin{aligned} \int _{K_k^{\text {S}}} - (u^s_h)_i \partial _{x_i} g'_j ({\overline{v}}^s_h)_j \rho ^0 \,\mathrm {d}x&= ({\tilde{v}}^s_i|_{K_k})^{{\mathsf {H}}}[- J_k \rho ^0_k D_{\partial _{x_i} g'_j} {\mathcal {M}}_s ] {\tilde{u}}^s_j|_{K_k} , \end{aligned}$$
(63)
$$\begin{aligned} \int _{K_k^{\text {S}}} - (u^s_h)_j (\partial _{x_j} ({\overline{v}}^s_h)_i) g'_i \rho ^0 \,\mathrm {d}x&= ({\tilde{v}}^s_i|_{K_k})^{{\mathsf {H}}}[- J_k {\mathsf {D}}^s_j {\mathcal {M}}_s \rho ^0_k D_{g'_i} ] {\tilde{u}}^s_j|_{K_k} , \end{aligned}$$
(64)

where \(c^{k}_{ijmn}\), \(\rho ^0_k\) and \(J_k\) denote the stiffness tensor, density and the Jacobian on element \(K_k\), respectively; \(D_{g'_i}\) and \(D_{\partial _{x_i} g'_j}\) denote the diagonal matrices whose diagonal entries are \(g'_i\) and \(\partial _{x_i} g'_j\), respectively. For the evaluation of the boundary integration in \(A_{sg}\), we need to evaluate the submatrix on element \(E_l^{\text {FS}}\) through

$$\begin{aligned} \int _{E_l^{\text {FS}}} ({\overline{v}}^s_h)_i g'_i \nu ^{s \rightarrow f}_j (u^s_h)_j [\rho ^0]^f \,\mathrm {d}\Sigma = ({\tilde{v}}^s_i|_{E_l})^{{\mathsf {H}}}[ J^{2D}_l \rho ^0_l D_{g'_i} {\mathcal {M}}_s^{2D} \nu ^{s \rightarrow f}_j|_{E_l} ] {\tilde{u}}^s_j|_{E_l} , \end{aligned}$$
(65)

where \(\rho ^0_l\) and \(\nu ^{s \rightarrow f}_j|_{E_l}\) denote the density and normal vector on the boundary element \(E_l^{\text {FS}}\), respectively, upon extracting \({\tilde{v}}^s_i |_{E_l}\) and \({\tilde{u}}^s_i|_{E_l}\). We can deal with the integral over \(\Sigma ^{\text {FF}}\) similarly.

We then evaluate the submatrices for \(A_f\), \(A_p\), \(M_s\), \(M_f\) in Table 3 and obtain

$$\begin{aligned} \int _{K_k^{\text {F}}} \rho ^0 N^2 \frac{ g'_i ({\overline{v}}^f_h)_i g'_j (u^f_h)_j }{\Vert g' \Vert ^2} \,\mathrm {d}x&= ({\tilde{v}}^f_i|_{K_k})^{{\mathsf {H}}}[ J_k D_{g'_i/\Vert g'\Vert } \rho _k^0 N_k^2 {\mathcal {M}}_f D_{g'_j/\Vert g'\Vert } ] {\tilde{u}}^f_j|_{K_k} , \end{aligned}$$
(66)
$$\begin{aligned} \int _{K_k^{\text {F}}} - {\overline{v}}^p_h p_h \kappa ^{-1} \,\mathrm {d}x&= ({\tilde{v}}^p|_{K_k})^{{\mathsf {H}}}[ - J_k \kappa ^{-1}_k {\mathcal {M}}_p ] {\tilde{p}}|_{K_k} , \end{aligned}$$
(67)
$$\begin{aligned} \int _{K_k^{\text {S}}} ({\overline{v}}^s_h)_i (u^s_h)_i\rho ^0 \,\mathrm {d}x&= ({\tilde{v}}^s_i|_{K_k})^{{\mathsf {H}}}[ J_k \rho ^0_k {\mathcal {M}}_s ] {\tilde{u}}^s_i|_{K_k} , \end{aligned}$$
(68)
$$\begin{aligned} \int _{K_k^{\text {F}}} ({\overline{v}}^f_h)_i (u^f_h)_i \rho ^0 \,\mathrm {d}x&= ({\tilde{v}}^f_i|_{K_k})^{{\mathsf {H}}}[ J_k \rho ^0_k {\mathcal {M}}_f ] {\tilde{u}}^f_i|_{K_k} , \end{aligned}$$
(69)

where \( D_{g'_j/\Vert g'\Vert }\) denotes a diagonal matrix whose diagonal entries are \(g'_j/\Vert g'\Vert \) and \(N_k^2\) denotes the square of the Brunt-Väisälä frequency on element \(K_k\). We also obtain the rotation components \(R_s\) and \(R_f\),

$$\begin{aligned} \int _{K_k^{\text {S}}} \epsilon _{ijm} ({\overline{v}}^s_h)_i (u^s_h)_j \rho ^0 \,\mathrm {d}x&= ({\tilde{v}}^s_i|_{K_k})^{{\mathsf {H}}}[ \epsilon _{ijm} J_k \rho ^0_k {\mathcal {M}}_s ] {\tilde{u}}^s_j|_{K_k} , \end{aligned}$$
(70)
$$\begin{aligned} \int _{K_k^{\text {F}}} \epsilon _{ijm} ({\overline{v}}^f_h)_i (u^f_h)_j \rho ^0 \,\mathrm {d}x&= ({\tilde{v}}^f_i|_{K_k})^{{\mathsf {H}}}[ \epsilon _{ijm} J_k \rho ^0_k {\mathcal {M}}_f ] {\tilde{u}}^f_j|_{K_k} , \end{aligned}$$
(71)

where \(\epsilon _{ilm}\) denotes the Levi-Civita symbol.

1.2 Submatrices: \(A_{\text {dg}}\) and \(A_{\text {dg}}^{{\mathsf {T}}}\)

Here, we discuss the integration between the different variables. For the inner products between \(u^f_h\) and \(p_h\) for \(A_{\text {dg}}\) and \(A_{\text {dg}}^{{\mathsf {T}}}\) in Table 3, we evaluate the mass matrices \({\mathcal {M}}_{pf}\) and \({\mathcal {M}}_{fp}\),

$$\begin{aligned} {\mathcal {M}}_{pf} = ({\mathcal {V}}_p^{-1}(I_{f}))^T {\mathcal {V}}_{f}^{-1}(I_{p}) , \quad {\mathcal {M}}_{fp} = ({\mathcal {V}}_{f}^{-1}(I_{p}))^T {\mathcal {V}}_p^{-1}(I_{f}) , \end{aligned}$$

where we refine the notation to indicate submatrices of \({\mathcal {V}}\); \({\mathcal {V}}(I)\) denotes the submatrix of \({\mathcal {V}}\) formed by columns indexed by \(I \subseteq \{1,\ldots , N_{p}\}\). The selection of submatrices is based on the polynomial construction [63, (10.6)]. For instance, if the polynomial orders used for both \(u^f_h\) and \(p_h\) are the same, i.e., \(p^f=p^p\), \(I_{f}=I_{p}=\{1,\ldots , N_{p^f}\}\); if \(p^p=1\) and \(p^f=2\), we have \(N_{p^p}=4\), \(N_{p^f}=10\) and \(I_{f}=\{1,2,3,4\}\), \(I_{p}=\{1,2,4,7\}\). It is apparent that \({\mathcal {M}}_{pf} = {\mathcal {M}}_{fp}^T\).

Evaluating \(A_{\text {dg}}\) in Table 3 requires the evaluation of the submatrices on element \(K_k\) through

$$\begin{aligned} \int _{K_k^{\text {F}}} ({\overline{v}}^f_h)_j (\partial _{x_j} p_h ) \,\mathrm {d}x&= ({\tilde{v}}^f_j|_{K_k})^{{\mathsf {H}}}[ J_k {\mathcal {M}}_{fp} {\mathsf {D}}_{j}^p ] {\tilde{p}}|_{K_k} , \end{aligned}$$
(72)
$$\begin{aligned} \int _{K_k^{\text {F}}} ({\overline{v}}^f_h)_j g'_j p_h \rho ^0 \kappa ^{-1}\,\mathrm {d}x&= ({\tilde{v}}^f_j|_{K_k})^{{\mathsf {H}}}[ J_k D_{g'_j} \rho ^0_k \kappa ^{-1}_k {\mathcal {M}}_{fp} ] {\tilde{p}}|_{K_k} , \end{aligned}$$
(73)

where \(\kappa ^{-1}_k\) denotes the inverse of the bulk modulus on element \(K_k\). To evaluate \(A_{\text {dg}}^{{\mathsf {T}}}\) in Table 3, we also need to evaluate the submatrices on element \(K_k\) through

$$\begin{aligned} \int _{K_k^{\text {F}}} (\partial _{x_j} {\overline{v}}^p_h) (u^f_h)_j \,\mathrm {d}x&= ({\tilde{v}}^p|_{K_k})^{{\mathsf {H}}}[ J_k ({\mathsf {D}}_{j}^p)^{T} {\mathcal {M}}_{pf} ] {\tilde{u}}^f_j|_{K_k} , \end{aligned}$$
(74)
$$\begin{aligned} \int _{K_k^{\text {F}}} {\overline{v}}^p_h g'_j (u^f_h)_j \rho ^0 \kappa ^{-1} \,\mathrm {d}x&= ({\tilde{v}}^p|_{K_k})^{{\mathsf {H}}}[ J_k \rho ^0_k \kappa ^{-1}_k {\mathcal {M}}_{pf} D_{g'_j} ] {\tilde{u}}^f_j|_{K_k} . \end{aligned}$$
(75)

1.3 Submatrices: \(E_{\text {FS}}\) and \(E_{\text {FS}}^{{\mathsf {T}}}\)

For \(E_{\text {FS}}\) and \(E_{\text {FS}}^{{\mathsf {T}}}\) , similar to Sect. A.2, we introduce two new indices to construct \({\mathcal {M}}_{ps}^{2D}\) and \({\mathcal {M}}_{sp}^{2D}\) on the boundary elements associated with the fluid–solid boundary. The selection of the submatrix is based on [63, Chapter 6]. \({\mathcal {M}}_{ps}^{2D} = {{\mathcal {M}}_{sp}^{2D}}^{{\mathsf {T}}}\) holds true as well. To evaluate \(E_{\text {FS}}^{{\mathsf {T}}}\) in Table 3, we need to compute the submatrix on boundary element \(E^{\text {FS}}_l\) through

$$\begin{aligned} \int _{E_l^{{\text {FS}}}} ({\overline{v}}^s_h)_j \nu ^{s \rightarrow f}_j p_h \,\mathrm {d}\Sigma = ( {\tilde{v}}^s_j|_{E_l} ) ^{{\mathsf {H}}}[ J^{2D}_l \nu ^{s \rightarrow f}_j {\mathcal {M}}_{sp}^{2D} ] {\tilde{p}}|_{E_l} , \end{aligned}$$
(76)

upon extracting \({\tilde{p}}|_{E_l}\) on boundary element \(E^{\text {FS}}_l\). To evaluate \(E_{\text {FS}}\) in Table 3, we need to evaluate the submatrix on boundary element \(E^{\text {FS}}_l\) through

$$\begin{aligned} \int _{E^{{\text {FS}}}_l} {\overline{v}}^p_{h} \nu ^{f \rightarrow s}_j (u^s_{h})_j \,\mathrm {d}\Sigma = ({\tilde{v}}^p|_{E_l} )^{{\mathsf {H}}}[ J^{2D}_l \nu ^{f \rightarrow s}_j {\mathcal {M}}_{ps}^{2D} ] {\tilde{u}}^s_j|_{E_l} , \end{aligned}$$
(77)

upon extracting \({\tilde{v}}^p|_{E_l}\) on \(E^{\text {FS}}_l\).

We are now able to build all the submatrices for the evaluation of the integrals in Table 3. We then assemble the global matrices from all these submatrices using standard techniques similar to those in [9, 67].

1.4 Construction of the Submatrices for the Perturbation of the Gravitational Potential

Similar to the previous subsections, we construct the submatrices in \(C_s\) in Table 4,

$$\begin{aligned} \int _{K_k^{\text {S}}} \partial _{x_i} ( \rho ^0 (u^s_h)_i ) \,\mathrm {d}x&= ({\mathbf {1}}|_{K_k})^{{\mathsf {H}}}[J_k {\mathcal {M}}_s {\mathsf {D}}_i^s \rho ^0_k ] {\tilde{u}}^s_i|_{K_k} , \end{aligned}$$
(78)
$$\begin{aligned} \int _{E_l^{\text {FS}}} \nu ^{f\rightarrow s}_i (u^s_h)_i \left[ \rho ^0\right] ^s \,\mathrm {d}\Sigma&= ({\mathbf {1}}|_{E_l})^{{\mathsf {H}}}[ J^{2D}_l \nu ^{f\rightarrow s}_i [\rho ^0]^s_l {\mathcal {M}}_s^{2D} ] {\tilde{u}}^s_i|_{E_l} ,\end{aligned}$$
(79)
$$\begin{aligned} \int _{E_l^{\text {S}}} \nu _i (u^s_h)_i \left[ \rho ^0\right] ^+_- \,\mathrm {d}\Sigma&= ({\mathbf {1}}|_{E_l})^{{\mathsf {H}}}[J^{2D}_l \nu _i ([\rho ^0]^+_-)_l {\mathcal {M}}_s^{2D} ] {\tilde{u}}^s_i|_{E_l} , \end{aligned}$$
(80)

and the submatrices in \(C_s^{{\mathsf {T}}}\),

$$\begin{aligned} \int _{K_k^{\text {S}}} [\partial _{x_i} ( \rho ^0 ({\overline{v}}^s_h)_i )] S_k(u_h) \,\mathrm {d}x&= ({\tilde{v}}^s_i|_{K_k})^{{\mathsf {H}}}[J_k \rho ^0_k ({\mathsf {D}}_i^s)^{{\mathsf {T}}}{\mathcal {M}}_s S_k({\tilde{u}}) ] {\mathbf {1}}|_{K_k}, \end{aligned}$$
(81)
$$\begin{aligned} \int _{E_l^{\text {FS}}} \nu ^{f\rightarrow s}_i ({\overline{v}}^s_h)_i S_l(u_h) \left[ \rho ^0\right] ^s \,\mathrm {d}\Sigma&= ({\tilde{v}}^s_i|_{E_l})^{{\mathsf {H}}}[ J^{2D}_l \nu ^{f\rightarrow s}_i {\mathcal {M}}_s^{2D} [\rho ^0]^s_l S_l({\tilde{u}}) ] {\mathbf {1}}|_{E_l} ,\end{aligned}$$
(82)
$$\begin{aligned} \int _{E_l^{\text {S}}} \nu _i ({\overline{v}}^s_h)_i S_l(u_h) \left[ \rho ^0\right] ^+_- \,\mathrm {d}\Sigma&= ({\tilde{v}}^s_i|_{E_l})^{{\mathsf {H}}}[J^{2D}_l \nu _i {\mathcal {M}}_s^{2D} ([\rho ^0]^+_-)_l S_l({\tilde{u}}) ] {\mathbf {1}}|_{E_l} , \end{aligned}$$
(83)

where \({\mathbf {1}}\) denotes a vector of all ones. The construction of the submatrices in \(C_f\) and \(C_f^{{\mathsf {T}}}\) is the same. We are now able to build all the submatrices for the evaluation of the integrals in Table 4.

Full Mode Coupling

Concerning the Galerkin approximation, we can use different, nonlocal bases of functions in the appropriate energy space, for example, the spectral-Galerkin method [123]. In this appendix, we consider the use of the eigenfunctions of a spherically symmetric, non-rotating, perfectly elastic and isotropic (SNREI) reference model as a basis in this method. This has been implemented by [39, 40, 142, 144], and named the full mode coupling approach. An immediate drawback of using this basis, however, is that the fluid–solid boundaries need to be spherically symmetric, as these are encoded in these basis functions.

We let \(u_{km}\) represent the eigenfunctions associated with eigenfrequencies, \(\omega _k\), in terms of spherical harmonics, \(Y_l^m\), that is,

$$\begin{aligned} u_{km} = U_{km} {\mathbf {P}}_{lm} + V_{km} {\mathbf {B}}_{lm} + W_{km} {\mathbf {C}}_{lm} \quad \, \text {(no summation over }m), \end{aligned}$$

where k is the multi-index for the eigenfrequency; \(m=-l,-l+1\ldots ,l-1,l\) is the index corresponding with the degeneracy with l denoting the spherical harmonic degree; \(U_{km}, V_{km}\) and \(W_{km}\) are the three components of eigenfunctions and are functions of the radial coordinate; \({\mathbf {P}}_{lm}\), \({\mathbf {B}}_{lm}\) and \({\mathbf {C}}_{lm}\) are the vector spherical harmonics, see [35, (8.36)] for their definition. In addition, \(p_{km}\) needs to be introduced to constrain the solution, cf. (13) [37, Subsection 3.3]. Since \(\nabla \cdot u_{km}(x)\) can be expanded using \(Y_l^m(x)\) [35, (8.38)] and \(u_{km}(x) \cdot g_{(r)}\) can also be expanded using \(Y_l^m(x)\) for the radial models, we let \(p_{km} = P_{km} Y_l^m\) with

$$\begin{aligned} P_{km} = - \kappa _{(r)} \left[ \partial _r U_{km} + r^{-1} (2 U_{km} - \sqrt{l(l+1)}V_{km}) \right] + \rho ^0_{(r)} g_{(r)} U_{km}, \end{aligned}$$

where \(\rho _{(r)}^0\), \(\kappa _{(r)}\) and \(g_{(r)}\) denote the radial profiles of the density, bulk modulus and reference gravitational field of a radial model, respectively. Similarly, the incremental gravitational potential of the radial models takes the form, \(s_{km} = S_{km} Y_l^m\), where \(S_{km}\) is also a function in the radial coordinate. In the following, l and m are fixed.

Table 19 Implicit definition of the matrices in (87) (no summations over k and m). Since the construction of \(A_{sg}^{(r)}\) is standard, we refer to [35, (8.43) & (8.44)] and [147, (3.1)]. In the above, \(\int _{\Omega _{(r)}^{\text {S}}}=\sum _{q=1}^{N_L^{\text {S}}} \int _{L_q^{\text {S}}}\) and \(\int _{\Omega _{(r)}^{\text {F}}}=\sum _{q=1}^{N_L^{\text {F}}} \int _{L_q^{\text {F}}}\)
Table 20 Implicit definition of the matrices in (87) (no summation over k and m). In the above, \(\int _{\Omega _{(r)}^{\text {S}}}=\sum _{q=1}^{N_L^{\text {S}}} \int _{L_q^{\text {S}}}\) and \(\int _{\Omega _{(r)}^{\text {F}}}=\sum _{q=1}^{N_L^{\text {F}}} \int _{L_q^{\text {F}}}\). In the Poisson’s equation, the computation of the integral \(\int _0^{\infty }\) requires special treatment, see [147, Chapter 3.2.2]
Table 21 Implicit definition of the matrices in (88) for the Cowling approximation
Table 22 Implicit definition of the matrices in (88)

In a SNREI model, for the computation of the toroidal modes, we only need to consider a solid annulus comprising the mantle and the crust. We exemplify the computations with the spheroidal modes and let \(U'_{km}\), \(P'_{km}\) and \(S'_{km}\) be test functions for \(U_{km}\), \(P_{km}\) and \(S_{km}\) following the Galerkin method. We let the \({\tilde{X}}_{(r)}\) be the 1D interval of the radial planet and have \({\tilde{X}}_{(r)} = \Omega _{(r)}^{\text {S}} \cup \Omega _{(r)}^{\text {F}}\), where \(\Omega _{(r)}^{\text {S}}\) and \(\Omega _{(r)}^{\text {F}}\) denote the 1D intervals for the solid and fluid regions, respectively. Given a regular finite-element partitioning \({\mathcal {T}}_h^{(r)}\) of the interval \({\tilde{X}}_{(r)}\), we denote an element of the mesh by \(L_q \in {\mathcal {T}}_h^{(r)}\) and have \({\tilde{X}}_{(r)} = \bigcup _{q=1}^{N_L} L_q\), where \(N_L\) denotes the total number of 1D elements. Furthermore, we let \(L_q^{\text {S}}\) and \(L_q^{\text {F}}\) specifically be elements in the solid and fluid regions and have

$$\begin{aligned} \Omega _{(r)}^{\text {S}} = \bigcup _{q=1}^{N_L^{\text {S}}} L_q^{\text {S}}, \quad \Omega _{(r)}^{\text {F}} = \bigcup _{q=1}^{N_L^{\text {F}}} L_q^{\text {F}}, \end{aligned}$$

where \(N_L^{\text {S}}\) and \(N_L^{\text {F}}\) denote the numbers of 1D elements in the solid and fluid regions, respectively. We let \(\Sigma ^{\text {FS}}_{(r)}\) denote the fluid–solid boundary points in the radial interval. We introduce the finite-element solutions, \(U_{km;h}^s\), \(U_{km;h}^f\), \(V_{km;h}^s\), \(V_{km;h}^f\), \(P_{km;h}\) and \(S_{km;h}\), and test functions, \(U_{km;h}^{s'}\), \(U_{km;h}^{f'}\), \(V_{km;h}^{s'}\), \(V_{km;h}^{f'}\), \(P'_{km;h}\) and \(S'_{km;h}\). We set \(N_{p^U} =(p^U+1)/2\), where \(N_{p^U}\) is the number of nodes on a 1D element for the \(p^U\)-th order polynomial approximation. We have likewise expressions for \(N_{p^V}\), \(N_{p^P}\) and \(N_{p^S}\). As in Sect. 4.2, we introduce nodal-based Lagrange polynomials, \(\ell _i^{U}\), \(\ell _i^{V}\), \(\ell _i^{P}\), \(\ell _i^S\), on the respective 1D elements \(L \in {\mathcal {T}}_h^{(r)}\), and write

$$\begin{aligned} U_{km;h}^s(x)&= \sum _{i=1}^{N_{p^U}} U_{km;h}^s(x_i) \ell ^U_i(x) , \quad U_{km;h}^f(x) = \sum _{i=1}^{N_{p^U}} U_{km;h}^f(x_i) \ell ^U_i(x) , \end{aligned}$$
(84)
$$\begin{aligned} V_{km;h}^s(x)&= \sum _{i=1}^{N_{p^V}} V_{km;h}^s(x_i) \ell ^V_i(x) , \quad V_{km;h}^f(x) = \sum _{i=1}^{N_{p^V}} V_{km;h}^f(x_i) \ell ^V_i(x) , \end{aligned}$$
(85)
$$\begin{aligned} P_{km}(x)&= \sum _{i=1}^{N_{p^P}} P_{km}(x_i) \ell ^P_i(x), \quad S_{km}(x) = \sum _{i=1}^{N_{p^S}} S_{km}(x_i) \ell ^S_i(x), \end{aligned}$$
(86)

for \(x\in L^{\text {S}}\) and \(x \in L^{\text {F}}\), respectively; similar representations hold for \(U_{km;h}^{s'}\), \(U_{km;h}^{f'}\), \(V_{km;h}^{s'}\), \(V_{km;h}^{f'}\), \(P'_{km;h}\) and \(S'_{km;h}\), respectively. We note that the fluid–solid boundary points coincide with nodes.

As in Sects. 4 and 5, we collect the “values” of \(U_{km;h}^s\), \(U_{km;h}^f\), \(V_{km;h}^s\), \(V_{km;h}^f\), \(P_{km;h}\) and \(S_{km;h}\) at all the nodes, in vectors \({\tilde{U}}_{km}^s\), \({\tilde{U}}_{km}^f\), \({\tilde{V}}_{km}^s\), \({\tilde{V}}_{km}^f\), \({\tilde{V}}_{km}\) and \({\tilde{S}}_{km}\), respectively, and collect the values of \(U_{km;h}^{s'}\), \(U_{km;h}^{f'}\), \(V_{km;h}^{s'}\), \(V_{km;h}^{f'}\), \(P'_{km;h}\) and \(S'_{km;h}\) at all the nodes, in “vectors" \({\tilde{U}}_{km}^{s'}\), \({\tilde{U}}_{km}^{f'}\), \({\tilde{V}}_{km}^{s'}\), \({\tilde{V}}_{km}^{f'}\), \({\tilde{P}}'_{km}\) and \({\tilde{S}}'_{km}\), respectively. We let

$$\begin{aligned} {\tilde{u}}_{km}^{(r)}&= (({\tilde{U}}_{km}^s)^{{\mathsf {T}}}, ({\tilde{V}}_{km}^s)^{{\mathsf {T}}}, ({\tilde{U}}_{km}^f)^{{\mathsf {T}}}, ({\tilde{V}}_{km}^f)^{{\mathsf {T}}})^{{\mathsf {T}}}, \\ {\tilde{u}}^s_{km}&= (({\tilde{U}}^s_{km})^{{\mathsf {T}}}, ({\tilde{V}}^s_{km})^{{\mathsf {T}}})^{{\mathsf {T}}}, \quad {\tilde{u}}^f_{km} = (({\tilde{U}}^f_{km})^{{\mathsf {T}}}, ({\tilde{V}}^f_{km})^{{\mathsf {T}}})^{{\mathsf {T}}}, \end{aligned}$$

and obtain the resulting eigenvalue problem (cf. (54))

$$\begin{aligned} (A_{G}^{(r)} - E_{G}^{(r)} {A_p^{(r)}}^{-1} {E_{G}^{(r)}}^{{\mathsf {T}}}- {C^{(r)}}^{{\mathsf {T}}}(S^{(r)})^{-1} C^{(r)}) {\tilde{u}}_{km}^{(r)} = \omega _k^2 M^{(r)} {\tilde{u}}_{km}^{(r)} , \end{aligned}$$
(87)

where

$$\begin{aligned} A_{G}^{(r)} = \left( \begin{array}{cc} A_{sg}^{(r)} &{} 0 \\ 0 &{} A_f^{(r)} \end{array} \right) , \, E_G^{(r)}&= \left( \begin{array}{c} E_{\text {FS}}^{(r)} \\ A_{\text {dg}}^{(r)} \end{array} \right) , \, {C^{(r)}}^{{\mathsf {T}}}= \left( \begin{array}{c} {C_s^{(r)}}^{{\mathsf {T}}}\\ {C_f^{(r)}}^{{\mathsf {T}}}\end{array} \right) , \\ M^{(r)} = \left( \begin{array}{cc} M_s^{(r)} &{} 0 \\ 0 &{} M_f^{(r)} \end{array} \right) , \, {E_G^{(r)}}^{{\mathsf {T}}}&= \left( \begin{array}{cc} {E_{\text {FS}}^{(r)}}^{{\mathsf {T}}}&{A_{\text {dg}}^{(r)}}^{{\mathsf {T}}}\end{array} \right) , \, C^{(r)} = \left( \begin{array}{cc} C_s^{(r)}&C_f^{(r)} \end{array} \right) , \end{aligned}$$

in which \(A_{sg}^{(r)}\), \(A_f^{(r)}\), \(A_p^{(r)}\), \(E_{\text {FS}}^{(r)}\), \({E_{\text {FS}}^{(r)}}^{{\mathsf {T}}}\), \(A_{\text {dg}}^{(r)}\), \({A_{\text {dg}}^{(r)}}^{{\mathsf {T}}}\), \(M_s^{(r)} \), \(M_f^{(r)} \), \({C_s^{(r)}}^{{\mathsf {T}}}\), \({C_f^{(r)}}^{{\mathsf {T}}}\), \(S^{(r)}\), \(C_s^{(r)}\) and \(C_f^{(r)}\), are given in Tables 19 and 20. We note that the matrices in (87) are obtained using separation of variables with spherical harmonics in (54). We substitute

$$\begin{aligned} {\tilde{P}}_{km} =- {A_p^{(r)}}^{-1} {E_{G}^{(r)}}^{{\mathsf {T}}}{\tilde{u}}_{km}^{(r)} \end{aligned}$$

upon solving (17) and

$$\begin{aligned} {\tilde{S}}_{km} = (S^{(r)})^{-1} C^{(r)} {\tilde{u}}_{km}^{(r)} \end{aligned}$$

upon solving (2). We only need to invoke a finite-element basis in the radial coordinate. We note that the resulting system can be solved via a standard eigensolver, such as LAPACK [5].

As mentioned above, we may consider the finite-element solution denoted as \(\{u_{km;h}\}\) as an alternative basis. Since \(\{u_{km;h}\}\) is a global basis for the general problem, we have no separation in the solid and fluid components and no longer have the fluid–solid boundary terms in the system. Following the Galerkin method, we then consider an expansion for the general solution \(u_c = \sum _{km} y_{km} u_{km;h}\) and the corresponding test functions \(v_c = \sum _{k'm'} y'_{k'm'} u_{k'm';h}\). We introduce \(s_c\) and its corresponding test functions \(v^{s_c}\) for self-gravitation. We have \(s_c = \sum _{km} z_{km} S_{km;h}\) and \(v^{s_c} = \sum _{k'm'} z'_{k'm'} S_{k'm';h}\). Assuming that all the discontinuities in a fully heterogeneous model coincide with the ones in the reference radial model and the fluid outer core, the eigenfuncions represented by the mentioned expansions lie in \(H_1 \subset E\) (cf. (32)) for the fully heterogeneous problem while the constraint equation disappears. We let y, \(y'\), z and \(z'\) be the “vectors" with components \(y_{km}\), \(y'_{k'm'}\), \(z_{km}\) and \(z'_{k'm'}\), respectively, and obtain

$$\begin{aligned} (A_{G}^{(c)} - {C^{(c)}}^{{\mathsf {T}}}{S^{(c)}}^{-1} C^{(c)}) y = \omega ^2 M^{(c)} y, \end{aligned}$$
(88)

as the counterpart of (54). Here, \(A_{G}^{(c)}\), \(M^{(c)}\), \({C^{(c)}}^{{\mathsf {T}}}\), \(S^{(c)}\) and \(C^{(c)}\), obtained via substituting the above-mentioned expansion of \(u_c\) in (54), are given in Tables 21 and 22.

If all the discontinuities in a fully heterogeneous model with a fixed fluid outer core coincide with the reference radial model, we note that the matrix elements in (88), Tables 21 and 22 are similar to [142, (A1)], which describe mode coupling in non-radial models. However, Woodhouse [142, (A1)] includes additional terms accounting for changes in the fluid–solid boundaries while in the previous work [144, (42)], perturbation theory is used to compute the eigenfrequency changes in terms of the unperturbed eigenfunctions; both calculations violate the condition that normal modes need to remain in E and in \(H_1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Li, R., Xi, Y. et al. A Non-perturbative Approach to Computing Seismic Normal Modes in Rotating Planets. J Sci Comput 91, 67 (2022). https://doi.org/10.1007/s10915-022-01836-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01836-5

Keywords

Mathematics Subject Classification

Navigation