Skip to main content
Log in

Local Error Estimates for Runge–Kutta Discontinuous Galerkin Methods with Upwind-Biased Numerical Fluxes for a Linear Hyperbolic Equation in One-Dimension with Discontinuous Initial Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present the local error estimate of Runge–Kutta discontinuous Galerkin (RKDG) methods with upwind-biased numerical fluxes for solving linear hyperbolic equations in one dimension with discontinuous initial data. Under the temporal–spatial condition to ensure the \(\hbox {L}^2\)-norm stability, the convergence orders in both space and time are optimal outside the pollution region due to the discontinuous initial data, whose width is nearly optimal to be one-half order of the mesh size, no matter in the upwind or the downwind direction. The kernel analysis is achieving the weighted \(\hbox {L}^2\)-norm stability result for the RKDG methods, based on the matrix transferring process and the local \(\hbox {L}^2\)-projection. Furthermore, we need to set up the weighted approximation property for the generalized Gauss–Radau projection. Finally some numerical experiments are also given to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Cao, W., Zhang, Z.: Some recent developments in superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations. J. Sci. Comput. 77(3), 1402–1423 (2018). https://doi.org/10.1007/s10915-018-0762-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, Y., Zhang, Q.: Local analysis of the local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularly perturbed problem. J. Sci. Comput. 72(2), 792–819 (2017). https://doi.org/10.1007/s10915-017-0378-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss–Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comput. 86(305), 1233–1267 (2017). https://doi.org/10.1090/mcom/3141

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Guzmán, J.: Error estimates for the Runge–Kutta discontinuous Galerkin method for the transport equation with discontinuous initial data. SIAM J. Numer. Anal. 46(3), 1364–1398 (2008). https://doi.org/10.1137/060668936

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989). https://doi.org/10.2307/2008474

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. RAIRO Modél. Math. Anal. Numér. 25(3), 337–361 (1991). https://doi.org/10.1051/m2an/1991250303371

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998). https://doi.org/10.1006/jcph.1998.5892

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001). https://doi.org/10.1023/A:1012873910884

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990). https://doi.org/10.2307/2008501

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989). https://doi.org/10.1016/0021-9991(89)90183-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72(242), 577–606 (2003). https://doi.org/10.1090/S0025-5718-02-01464-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46(173), 1–26 (1986). https://doi.org/10.2307/2008211

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45(1–3), 285–312 (1984). https://doi.org/10.1016/0045-7825(84)90158-0

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Ryan, J.K., Kirby, R.M., Vuik, K.: Smoothness-increasing accuracy-conserving (SIAC) filtering for discontinuous Galerkin solutions over nonuniform meshes: superconvergence and optimal accuracy. J. Sci. Comput. 81(3), 1150–1180 (2019). https://doi.org/10.1007/s10915-019-00920-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016). https://doi.org/10.1090/mcom/3022

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In: Numerical Solutions of Partial Differential Equations. Advanced Mathematics Training Course, CRM Barcelona, pp. 149–201. Birkhäuser, Basel (2009). https://doi.org/10.1007/978-3-7643-8940-6

  17. Shu, C.-W.: Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, pp. 369–397. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41640-3

  18. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, Y., Shu, C.-W., Zhang, Q.: Error estimate of the fourth-order Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 58(5), 2885–2914 (2020). https://doi.org/10.1137/19M1280077

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, Y., Zhang, Q., Shu, C.-W., Wang, H.: The L\(^2\)-norm stability analysis of Runge–Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019). https://doi.org/10.1137/18M1230700

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, Y., Meng, X., Shu, C.-W., Zhang, Q.: Superconvergence analysis of the Runge–Kutta discontinuous Galerkin methods for a linear hyperbolic equation. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-020-01274-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004). https://doi.org/10.1137/S0036142902404182

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(3), 1038–1063 (2010). https://doi.org/10.1137/090771363

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q., Shu, C.-W.: Error estimates for the third order explicit Runge–Kutta discontinuous Galerkin method for a linear hyperbolic equation in one-dimension with discontinuous initial data. Numer. Math. 126(4), 703–740 (2014). https://doi.org/10.1007/s00211-013-0573-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of Y. Xu is partially supported by NSFC Grant 12071214 and Postgraduate Research and Practice Innovation Program of Jiangsu Province Grant KYCX21_0028. The work of D. Zhao is partially supported by NSFC Grants 12071214. The work of Q. Zhang is partially supported by NSFC Grants 12071214 and 11671199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section we present the detailed proof of (4.9), where Cauchy–Schwarz inequality and Young inequality are the elemental tools.

The former five terms in (4.7) are easily bounded along the same line as in [19, 20]. Limited by the length of this paper, we only give a quick description below. In details,

$$\begin{aligned} \Pi ^n_1 \le \Big (a_{\zeta \zeta }+\frac{1}{2}\vert a_{\zeta \zeta }\vert \Big ) \Vert \mathbb {D}_\zeta u_h^n\Vert _{\psi ^n,I_h}^2 +C\mathcal {G}^n_1. \end{aligned}$$
(6.1)

Lemma 3.2 implies

$$\begin{aligned} \begin{aligned} \Pi ^n_2 \le&\; C(1+hK) \sum _{0\le i,j\le ms-1} \Vert \mathbb {D}_{j}u_h^n\Vert _{\psi ^n,I_h} \Vert \mathbb {D}_{i}f^n\Vert _{\psi ^n,I_h}\tau \\ \le&\; CT^{-1}(1+hK)^2\sum _{0\le j\le ms-1} \Vert \mathbb {D}_{j}u_h^n\Vert _{\psi ^n,I_h}^2\tau + CT\sum _{0\le i\le ms-1} \Vert \mathbb {D}_{i}f^n\Vert _{\psi ^n,I_h}^2\tau \\ \le&\; C(1+h^2K^2)\mathcal {G}^n_2+C\mathcal {G}^n_3. \end{aligned} \end{aligned}$$
(6.2)

Lemma 3.3 and the second inverse inequality in (3.2) yield

$$\begin{aligned} \begin{aligned} \Pi ^n_3 \le&\; C\tau \beta Kh^{\frac{1}{2}}\sum _{0\le i,j\le ms-1} \Vert \![\![\mathbb {D}_{i}u_h^n]\!]\!\Vert _{\psi ^n,\varGamma _{\!h}} \Vert \mathbb {D}_{j}u_h^n\Vert _{\psi ^n,I_h} \\ \le&\; \frac{1}{4}\varepsilon \Big (\theta -\frac{1}{2}\Big ) m\tau \beta \sum _{0\le i\le ms-1}\Vert \![\![\mathbb {D}_iu_h^n]\!]\!\Vert _{\psi ^n,\varGamma _{\!h}}^2 + C\tau \beta hK^2 \sum _{0\le j\le ms-1} \Vert \mathbb {D}_{j}u_h^n\Vert _{\psi ^n,I_h}^2 \\ \le&\; \frac{1}{2}\mathcal {Y}^n + C\lambda \Vert \mathbb {D}_\zeta u_h^n\Vert _{\psi ^n,I_h}^2 + C\mathcal {G}^n_1 + CT\beta hK^2\mathcal {G}^n_2. \end{aligned} \end{aligned}$$
(6.3)

Since the matrix \(\{b_{ij}\}_{0\le i,j\le \zeta -1}\) is symmetric positive definite with the smallest eigenvalue \(\varepsilon >0\), we can additionally use the second inverse inequality in (3.2) to yield

$$\begin{aligned} \Pi ^n_4 \le -\mathcal {Y}^n + C\tau \beta \sum _{\zeta \le i\le ms-1} \Vert \![\![\mathbb {D}_iu_h^n]\!]\!\Vert _{\psi ^n,\varGamma _{\!h}}^2 \le -\mathcal {Y}^n + C\lambda \Vert \mathbb {D}_\zeta u_h^n\Vert _{\psi ^n,I_h}^2 + C\mathcal {G}^n_1. \end{aligned}$$
(6.4)

Since \(\psi (x,t)=\psi _{\star }(x-\beta t)\) and \(\lambda \le 1\), we use the Taylor expansion together with assumptions W1 and W2 to get

$$\begin{aligned} \vert \varDelta \psi ^n(x)\vert \le m\tau \beta \int ^{x}_{x-m\tau \beta } \vert \partial _x^2\psi ^n(x')\vert \,\mathrm {d}x' \le C\tau \beta hK^2\vert \psi ^n(x)\vert , \end{aligned}$$

which implies

$$\begin{aligned} \Pi ^n_5 \le C\tau \beta hK^2\sum _{0\le i\le ms} \Vert \mathbb {D}_iu_h^n\Vert _{\psi ^n,I_h}^2 \le CT\beta hK^2\mathcal {G}^n_2. \end{aligned}$$
(6.5)

However, the estimate to the last term \(\Pi ^n_6\) is a little difficult. Without losing generality, we assume that \(\psi ^n\) is monotone increasing and take \(\phi =\partial _x\psi ^n\) in (3.21). Based on the second strategy of the matrix transferring process (see Lemma 3.9), we have

$$\begin{aligned} \Pi ^n_6= \Pi ^n_{61}+\Pi ^n_{62}+\Pi ^n_{63}+\Pi ^n_{64}+\Pi ^n_{65}, \end{aligned}$$
(6.6)

where

$$\begin{aligned} \Pi ^n_{61} =&\; m\tau \beta \sum _{i,j\in \{0,ms\}, i+j\ge r} p_{ij}\Big (\mathbb {D}_iu_h^n,\partial _x\psi ^n\mathbb {D}_ju_h^n\Big )_{I_h}, \end{aligned}$$
(6.7a)
$$\begin{aligned} \Pi ^n_{62} =&\; -(m\tau \beta )^2 \Big (\theta -\frac{1}{2}\Big ) \sum _{0\le i,j\le ms-1} q_{ij} \Big \langle [\![\mathbb {D}_iu_h^n]\!],\partial _x\psi ^n[\![\mathbb {D}_ju_h^n]\!]\Big \rangle _{\varGamma _{\!h}}, \end{aligned}$$
(6.7b)
$$\begin{aligned} \Pi ^n_{63} =&\; (m\tau )^2\beta \sum _{0\le i,j\le ms-1} q_{ij} \Big (\mathbb {D}_if^n,\mathbb {P}_h(\partial _x\psi ^n\mathbb {D}_ju_h^n)\Big )_{I_h}, \end{aligned}$$
(6.7c)
$$\begin{aligned} \Pi ^n_{64} =&\; -(m\tau )^2\beta \sum _{0\le i,j\le ms-1} q_{ij} \mathcal {H}(\mathbb {D}_iu_h^n,\mathbb {P}_h^\perp (\partial _x\psi ^n\mathbb {D}_ju_h^n)), \end{aligned}$$
(6.7d)
$$\begin{aligned} \Pi ^n_{65} =&\; \frac{1}{2}(m\tau \beta )^2 \sum _{0\le i,j\le ms-1} q_{ij} \Big (\mathbb {D}_iu_h^n,\partial _x^2\psi ^n\mathbb {D}_ju_h^n\Big )_{I_h}. \end{aligned}$$
(6.7e)

Each term in (6.7) can be similarly bounded by using Cauchy-Schwarz inequality and Young inequality, with the additional help of

$$\begin{aligned} \Vert v_h\Vert _{\vert \partial _x\phi \vert ,I_h} \le K^{\frac{1}{2}}\Vert v_h\Vert _{\phi ,I_h}, \quad \Vert \![\![v_h]\!]\!\Vert _{\vert \partial _x\phi \vert ,\varGamma _{\!h}} \le K^{\frac{1}{2}}\Vert \![\![v_h]\!]\!\Vert _{\phi ,\varGamma _{\!h}}, \end{aligned}$$
(6.8)

for \(\phi =\psi ^n\) or \(\phi =\partial _x\psi ^n\). Note that (6.8) follows from assumption W2.

The estimate to the first term \(\Pi ^n_{61}\) is kernel. Noticing the shallowing structure of the matrix \(\{p_{ij}\}\), we have

$$\begin{aligned} \begin{aligned} \Pi ^n_{61} \le&\; C\tau \beta K\Bigg ( \sum _{r\le i\le ms} \Vert \mathbb {D}_iu_h^n\Vert _{\psi ^n,I_h}\Vert u_h^n\Vert _{\psi ^n,I_h} + \sum _{0\le j\le ms} \Vert \mathbb {D}_{ms}u_h^n\Vert _{\psi ^n,I_h}\Vert \mathbb {D}_ju_h^n\Vert _{\psi ^n,I_h}\Bigg ) \\ \le&\; C\tau \beta K\Bigg (\sum _{r\le i\le ms} \Vert \mathbb {D}_iu_h^n\Vert _{\psi ^n,I_h}^2\Bigg )^{\frac{1}{2}} \Bigg (\sum _{0\le j\le ms} \Vert \mathbb {D}_ju_h^n\Vert _{\psi ^n,I_h}^2\Bigg )^{\frac{1}{2}} \\ \le&\; C\tau \beta h^{-1} \sum _{r\le i\le ms} \Vert \mathbb {D}_iu_h^n\Vert _{\psi ^n,I_h}^2 +C\tau \beta hK^2\sum _{0\le j\le ms} \Vert \mathbb {D}_ju_h^n\Vert _{\psi ^n,I_h}^2 \\ \le&\; C\lambda \Vert \mathbb {D}_\zeta u_h^n\Vert _{\psi ^n,I_h}^2 +C\mathcal {G}^n_1 +CT\beta hK^2\mathcal {G}^n_2, \end{aligned} \end{aligned}$$

where \(\zeta \le r\) and \(\lambda \le 1\) are used at the last step. An application of (6.8) yields

$$\begin{aligned} \Pi ^n_{62} \le C\tau ^2\beta ^2K \sum _{0\le i\le ms-1} \Vert \![\![\mathbb {D}_iu_h^n]\!]\!\Vert _{\psi ^n,\varGamma _{\!h}}^2. \end{aligned}$$

Since \(\tau ^2\beta ^2=\tau \beta \lambda h=\lambda ^2h^2\), using the inverse inequality (3.2) to deal with the high order temporal information, we have

$$\begin{aligned} \begin{aligned} \Pi ^n_{62} \le&\; C\beta \lambda hK\sum _{0\le i\le \zeta -1}\Vert \![\![\mathbb {D}_iu_h^n]\!]\!\Vert _{\psi ^n,\varGamma _{\!h}}^2\tau +C\lambda ^2 hK \sum _{\zeta \le i\le ms-1} \Vert \mathbb {D}_iu_h^n\Vert _{\psi ^n,I_h}^2 \\ \le&\; C\lambda hK\mathcal {Y}^n +C\lambda hK\Vert \mathbb {D}_\zeta u_h^n\Vert _{\psi ^n,I_h}^2 +ChK\mathcal {G}^n_1. \end{aligned} \end{aligned}$$

Using Lemma 3.2 with \(\phi =\partial _x\psi ^n\), we have

$$\begin{aligned} \begin{aligned} \Pi ^n_{63} \le&\; C\tau ^2\beta \sum _{0\le i,j\le ms-1} \Vert \mathbb {P}_h(\partial _x\psi ^n\mathbb {D}_ju_h^n)\Vert _{(\partial _x\psi ^n)^{-1},I_h} \Vert \mathbb {D}_{i}f^n\Vert _{\partial _x\psi ^n,I_h} \\ \le&\; C\tau ^2\beta K(1+hK) \sum _{0\le i,j\le ms-1} \Vert \mathbb {D}_{j}u_h^n\Vert _{\psi ^n,I_h} \Vert \mathbb {D}_{i}f^n\Vert _{\psi ^n,I_h} \\ \le&\; CT^{-1}(1+hK)^4 \sum _{0\le j\le ms-1} \Vert \mathbb {D}_{j}u_h^n\Vert _{\psi ^n,I_h}^2\tau + CT \lambda ^2 \sum _{0\le i\le ms-1} \Vert \mathbb {D}_{i}f^n\Vert _{\psi ^n,I_h}^2\tau \\ \le&\; C(1+h^4K^4)\mathcal {G}^n_2+C\mathcal {G}^n_3. \end{aligned} \end{aligned}$$

Using Lemma 3.3 with \(\phi =\partial _x\psi ^n\) and (6.8), we have

$$\begin{aligned} \begin{aligned} \Pi ^n_{64} \le&\; C\tau ^2\beta ^2h^{\frac{1}{2}}K^2 \sum _{0\le i,j\le ms-1} \Vert \mathbb {D}_{i}u_h^n\Vert _{\psi ^n,I_h} \Vert \![\![\mathbb {D}_{j}u_h^n]\!]\!\Vert _{\psi ^n,\varGamma _{\!h}} \\ \le&\; C\tau ^2\beta ^2hK^3 \sum _{0\le i\le ms-1} \Vert \mathbb {D}_{i}u_h^n\Vert _{\psi ^n,I_h}^2 + C\tau ^2\beta ^2K \sum _{0\le j\le ms-1} \Vert \![\![\mathbb {D}_{j}u_h^n]\!]\!\Vert _{\psi ^n,\varGamma _{\!h}}^2 \\ \le&\; CT\beta h^2K^3\lambda \mathcal {G}^n_2+C\lambda hK\mathcal {Y}^n +C\lambda hK\Vert \mathbb {D}_\zeta u_h^n\Vert _{\psi ^n,I_h}^2 +ChK\mathcal {G}^n_1, \end{aligned} \end{aligned}$$

where the treatment for \(\Pi ^n_{62}\) have been also used here. Similarly, an application of (6.8) twice yields

$$\begin{aligned} \Pi ^n_{65} \le C\tau ^2\beta ^2 K^2 \sum _{0\le i\le ms-1} \Vert \mathbb {D}_iu_h^n\Vert _{\psi ^n,I_h}^2 \le CT\beta hK^2\lambda \mathcal {G}^n_2 \le CT\beta hK^2\mathcal {G}^n_2. \end{aligned}$$

Collecting the above inequalities into (6.6), we have the estimate

$$\begin{aligned} \begin{aligned} \Pi ^n_6 \le&\; C\lambda (1+hK)\Vert \mathbb {D}_\zeta u_h^n\Vert _{\psi ^n,I_h}^2 +C\lambda hK\mathcal {Y}^n \\ {}&\; +C(1+hK)\mathcal {G}^n_1 +C(1+T\beta hK^2)(1+h^4K^4)\mathcal {G}^n_2 +C\mathcal {G}^n_3. \end{aligned} \end{aligned}$$
(6.9)

Now we are able to get the expected inequality (4.9) by summing up all estimates for the terms \(\Pi ^n_1\) through \(\Pi ^n_6\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Zhao, D. & Zhang, Q. Local Error Estimates for Runge–Kutta Discontinuous Galerkin Methods with Upwind-Biased Numerical Fluxes for a Linear Hyperbolic Equation in One-Dimension with Discontinuous Initial Data. J Sci Comput 91, 11 (2022). https://doi.org/10.1007/s10915-022-01793-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01793-z

Keywords

Mathematics Subject Classification

Navigation