Skip to main content
Log in

Numerical Solution of an Axisymmetric Eddy Current Model with Current and Voltage Excitations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the numerical approximation of an axisymmetric time-harmonic eddy current problem involving an in-plane current. The analysis of the problem restricts to the conductor. The source of the problem is given in terms of boundary data currents and/or voltage drops defined in the so-called electric ports, which are parts of the boundary connected to exterior sources. This leads to an elliptic problem written in terms of the magnetic field with nonlocal boundary conditions. First, we prove the existence and uniqueness of the solution for a weak formulation written in terms of Sobolev spaces with appropriate weights. We show that the magnetic field is not the most appropriate variable to impose the boundary conditions when Lagrangian finite elements are used to discretize the problem. We propose an alternative weak formulation of the problem which allows us to avoid this drawback. We compute the numerical solution of the problem by using Lagrangian finite elements ad hoc modified on the vicinity of the symmetry axis. We provide a convergence result under rather general conditions. Moreover, we prove quasi-optimal order error estimates under additional regularity assumptions. Finally, we report numerical results which allow us to confirm the theoretical estimates and to assess the performance of the proposed method in a physical application which is the motivation of this paper: the computation of the current density distribution in a steel cylindrical bar submitted to electric-upsetting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alonso-Rodríguez, A., Valli, A.: Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications. Springer, Cham (2010)

    Book  Google Scholar 

  2. Bermúdez, A., Bullón, J., Pena, F., Salgado, P.: A numerical method for transient simulation of metallurgical compound electrodes. Finite Elem. Anal. Des. 39(4), 283–299 (2003)

    Article  Google Scholar 

  3. Bermúdez, A., Gómez, D., Piñeiro, M., Salgado, P., Venegas, P.: Numerical simulation of magnetization and demagnetization processes. IEEE T. Magn. 53(12), 1–6 (2017)

    Article  Google Scholar 

  4. Bermúdez, A., Gómez, D., Rodríguez, R., Venegas, P.: Numerical analysis of a transient non-linear axisymmetric eddy current model. Comput. Math. Appl. 70(8), 1984–2005 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bermúdez, A., Gómez, D., Salgado, P.: Mathematical Models and Numerical Simulation in Electromagnetism. Springer, New York (2014)

    Book  Google Scholar 

  6. Bermúdez, A., Gómez, D., Salgado, P., Rodríguez, R., Venegas, P.: Numerical solution of a transient nonlinear axisymmetric eddy current model with nonlocal boundary conditions. Math. Models Methods Appl. Sci. 23(13), 2495–2521 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bermúdez, A., Muñoz-Sola, R., Pena, F.: Existence of a solution for a thermoelectric model with several phase changes and a Carathéodory thermal conductivity. Nonlinear Anal. Real World Appl. 14(6), 2212–2230 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bermúdez, A., Reales, C., Rodríguez, R., Salgado, P.: Numerical analysis of a finite-element method for the axisymmetric eddy current model of an induction furnace. IMA J. Numer. Anal. 30(3), 654–676 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bermúdez, A., Rodríguez, R., Salgado, P.: Numerical treatment of realistic boundary conditions for the eddy current problem in an electrode via Lagrange multipliers. Math. Comp. 74(249), 123–151 (2005)

    Article  MathSciNet  Google Scholar 

  10. Bernardi, C., Dauge, M., Maday. Y.: Spectral methods for axisymmetric domains, vol 3 of Series in Applied Mathematics. Gauthier-Villars, Éditions Scientifiques et Médicales Elsevier, Paris; North-Holland, Amsterdam, 1999

  11. Buffa, A., Costabel, M., Sheen, D.: On traces for H(curl,\(\Omega \)) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2002)

    Article  MathSciNet  Google Scholar 

  12. Chaboudez, C., Clain, S., Glardon, R., Mari, D., Rappaz, J., Swierkosz, M.: Numerical modeling in induction heating for axisymmetric geometries. IEEE T. Magn. 33(1), 739–745 (1997)

    Article  Google Scholar 

  13. Copeland, D., Pasciak, J.: A least-squares method for axisymmetric div-curl systems. Numer. Linear Algebra Appl. 13(9), 733–752 (2006)

    Article  MathSciNet  Google Scholar 

  14. Gopalakrishnan, J., Pasciak, J.: The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations. Math. Comp. 75(256), 1697–1719 (2006)

    Article  MathSciNet  Google Scholar 

  15. Haddar, H., Jiang, Z.: Axisymmetric eddy current inspection of highly conducting thin layers via asymptotic models. Inverse Problems 31(11), 25 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, Z., Haddar, H., Lechleiter, A., El-Guedri, M.: Identification of magnetic deposits in 2-D axisymmetric eddy current models via shape optimization. Inverse Probl. Sci. Eng. 24(8), 1385–1410 (2016)

    Article  MathSciNet  Google Scholar 

  18. Logg, A., Mardal, K.-A., Wells, G. N.: editors. Automated solution of differential equations by the finite element method. The FEniCS book, volume 84 of Lecture Notes in Computational Science and Engineering. Springer, Heidelberg, 2012

  19. Mercier, B., Raugel, G.: Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en \(r, z\) et séries de fourier en \(\theta \). RAIRO, Anal. Numér., 16(4):405–461, 1982

  20. Meunier, G., Le Floch, Y., Guerin, C.: A nonlinear circuit coupled \(t-t_0-\phi \) formulation for solid conductors. IEEE T. Magn. 39(3), 1729–1732 (2003)

    Article  Google Scholar 

  21. Nuasri, P., Aue-u Lan, Y.: Investigation of the “surface dimple” defect occurring during the production of an electric upsetting process by viscoplastic finite element modeling. Int. J. Adv. Manuf. Technol. 98(1), 1047–1057 (2018)

  22. Quan, G.-Z., Zou, Z.-Y., Zhang, Z.-H., Pan, J.: A Study on formation process of secondary upsetting defect in electric upsetting and optimization of processing parameters based on multi-field coupling FEM. Mater. Res. 19(4), 856–864 (2016)

    Article  Google Scholar 

  23. Querales, J., Rodríguez, R., Venegas, P.: Numerical approximation of the displacement formulation of the axisymmetric acoustic vibration problem. SIAM J. Sci. Comput. 43, A1583–A1606 (2021)

    Article  MathSciNet  Google Scholar 

  24. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190), 483–493 (1990)

    Article  MathSciNet  Google Scholar 

  25. Touzani, R., Rappaz, J.: Mathematical models for eddy currents and magnetostatics. Scientific computation. Springer, Dordrecht (2014)

    Book  Google Scholar 

  26. Van Keer, R., Dupré, L.R., Melkebeek, J.A.A.: On a numerical method for 2D magnetic field computations in a lamination with enforced total flux. J. Comp. Appl. Math. 72(1), 179–191 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The work of the authors from Universidade de Santiago de Compostela was supported by FEDER, Ministerio de Economía, Industria y Competitividad-AEI research project MTM2017-86459-R, by Xunta de Galicia (Spain) research project GI-1563 ED431C 2021/15. R. Rodríguez was partially supported by CONICYT-Chile through project AFB170001. P. Venegas was partially supported by FONDECYT-Chile project 1211030 and by Centro de Modelamiento Matemático (CMM), FB210005, BASAL funds for centers of excellence from ANID-Chile. B. López-Rodríguez was partially supported by Universidad Nacional de Colombia through Hermes project 52759.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. López-Rodríguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix. A Mixed Formulation

A Appendix. A Mixed Formulation

For the implementation of Problem 3, it is necessary to impose the boundary condition \(\widetilde{G}_h^k=\widetilde{G}_h^{k-1}+\frac{I_k}{2\pi },\ k\in N_{{}_{\mathrm I}}\). This can be easily obtained by a static condensation procedure applied to the matrix arising from the sesquilinear form \(a(\cdot ,\cdot )\). However, depending on the computational tool, this boundary constraint can be difficult to implement. In order to propose an alternative for the computational implementation, in this appendix we introduce a mixed finite element approximation of Problem 3 which avoids static condensation. This new formulation could be solved, for instance, by using general purpose finite element software packages like FEniCS [18] and FreeFEM [16].

To begin with, let us introduce a finite element space. Let \(\mathcal {E}\) be the set of edges in \(\mathcal {T}_h\) lying on \(\varGamma _{{}_{\mathrm N}}\). Let \(e^1_h\in \mathcal {E}\) be the unique edge of \(\varGamma _{{}_{\mathrm N}}^0\) intersecting \(\varGamma _{{}_{\mathrm D}}\) (see Fig. 13).

Fig. 13
figure 13

Notations used in the proof of Theorem 2

We define

$$\begin{aligned} \mathcal {P}_h:=\{ \xi _h\in \mathrm {L}^2(\varGamma _{{}_{\mathrm N}})\; :\ \xi _h= 0\ \text { in } e^1_h,\ \xi _h|_e \in \mathbb {P}_0(e),\ \forall e\in \mathcal {E} \}. \end{aligned}$$

A mixed Galerkin approximation of Problem 2 reads as follows:

Problem 4

Find \(\widetilde{H}_h\in \mathcal {Y}_h\), \(V_h\in \mathcal {P}_h\) and \(V_k\in \mathbb {C}\), \(k\in N_{{}_{\mathrm I}}\) such that

$$\begin{aligned} a(\widetilde{H}_h,\widetilde{G}_h) +\sum _{k=0}^N\int _{\varGamma _{{}_{\mathrm N}}^k}V_h\frac{\partial {\bar{\widetilde{G}_h}}}{\partial \tau } +\sum _{k\in N_{{}_{\mathrm I}}}\int _{\varGamma _{{}_{\mathrm J}}^k} V_k\frac{\partial {\bar{\widetilde{G}_h}}}{\partial \tau }&=-\sum _{k\in N_{{}_{\mathrm V}}}V_k({\bar{\widetilde{G}_h}}^k-{\bar{\widetilde{G}_h}}^{k-1}) \\ \sum _{k=0}^N\int _{\varGamma _{{}_{\mathrm N}}^k}\frac{\partial \widetilde{H}_h}{\partial \tau }{\bar{\xi }}_h&=0 \\ \sum _{k\in N_{{}_{\mathrm I}}}\int _{\varGamma _{{}_{\mathrm J}}^k} \frac{\partial \widetilde{H}_h}{\partial \tau } \bar{W}_k&=\sum _{k\in N_{{}_{\mathrm I}}}\frac{I_k}{2\pi }\bar{W}_k \end{aligned}$$

for all \((\widetilde{G}_h,\xi _h,W_k)\in \mathcal {Y}_h\times \mathcal {P}_h\times \mathbb {C}\), \(k\in N_{{}_{\mathrm I}}\).

Since \(\mathcal {X}_h(\varvec{0}) \subset \mathcal {Y}_h\) and \(\displaystyle \int _{\varGamma _{{}_{\mathrm J}}^k} \frac{\partial \widetilde{H}_h}{\partial \tau }=\widetilde{H}_h^k-\widetilde{H}_h^{k-1}\), it is straightforward to show that if \(\widetilde{H}_h\) is solution to Problem 4 then is also a solution to Problem 3. Moreover, from the following theorem we obtain the equivalence between problems 3 and 4.

Theorem 2

Problem 4 has a unique solution.

Proof

Let \(\widetilde{H}_h\in \mathcal {Y}_h\), \(V_h\in \mathcal {P}_h\) and \(V_k\in \mathbb {C}\), \(k\in N_{{}_{\mathrm I}}\) be a solution of the corresponding Problem 4 with \(V_k=0\), \(k\in N_{{}_{\mathrm V}}\) and \(I_k=0\), \(k\in N_{{}_{\mathrm I}}\), that is,

$$\begin{aligned} a(\widetilde{H}_h,\widetilde{G}_h) +\sum _{k=0}^N\int _{\varGamma _{{}_{\mathrm N}}^k}V_h\frac{\partial {\bar{\widetilde{G}_h}}}{\partial \tau } +\sum _{k\in N_{{}_{\mathrm I}}}\int _{\varGamma _{{}_{\mathrm J}}^k} V_k\frac{\partial {\bar{\widetilde{G}_h}}}{\partial \tau }&=0&\forall \widetilde{G}_h\in \mathcal {Y}_h\,,\\ \sum _{k=0}^N\int _{\varGamma _{{}_{\mathrm N}}^k}\frac{\partial \widetilde{H}_h}{\partial \tau }{\bar{\xi }}_h&=0&\forall \xi _h\in \mathcal {P}_h\,,\\ \sum _{k\in N_{{}_{\mathrm I}}}\int _{\varGamma _{{}_{\mathrm J}}^k} \frac{\partial \widetilde{H}_h}{\partial \tau } \bar{W}_k&=0&\forall W_k\in \mathbb {C},\ k\in N_{{}_{\mathrm I}}\,. \end{aligned}$$

Taking \(\widetilde{G}_h:=\widetilde{H}_h\), \(\xi _h:=V_h\) and \(W_k:=V_k\), \(k\in N_{{}_{\mathrm I}}\), we obtain

$$\begin{aligned} a(\widetilde{H}_h,\widetilde{H}_h) +\sum _{k=0}^N\int _{\varGamma _{{}_{\mathrm N}}^k}V_h\frac{\partial {\bar{\widetilde{H}_h}}}{\partial \tau } +\sum _{k\in N_{{}_{\mathrm I}}}\int _{\varGamma _{{}_{\mathrm J}}^k} V_k\frac{\partial {\bar{\widetilde{H}_h}}}{\partial \tau }&=0\,,\\ \sum _{k=0}^N\int _{\varGamma _{{}_{\mathrm N}}^k}\frac{\partial \widetilde{H}_h}{\partial \tau }{\bar{V_h}}&=0\,,\\ \sum _{k\in N_{{}_{\mathrm I}}}\frac{\partial \widetilde{H}_h}{\partial \tau }\bar{V_k}&=0. \end{aligned}$$

Therefore, \(a(\widetilde{H}_h,\widetilde{H}_h)=0\). We recall that the sesquilinear form \(a(\cdot ,\cdot )\) is elliptic in \(\mathrm {H}^1_{-1}(\varOmega )\) then \(\widetilde{H}_h=0\). Thus, we have

$$\begin{aligned} \sum _{k=0}^N\int _{\varGamma _{{}_{\mathrm N}}^k}V_h\frac{\partial {\bar{\widetilde{G}_h}}}{\partial \tau } +\sum _{k\in N_{{}_{\mathrm I}}}\int _{\varGamma _{{}_{\mathrm J}}^k} V_k\frac{\partial {\bar{\widetilde{G}_h}}}{\partial \tau }=0\qquad \forall \widetilde{G}_h\in \mathcal {Y}_h\ . \end{aligned}$$
(32)

By proceeding as in Lemma 3 it is straightforward to show that, for each \(k\in N_{{}_{\mathrm I}}\) there exists \(\widetilde{G}_{k,h} \in \mathcal {Y}_h\) such that

$$\begin{aligned} \frac{\partial \widetilde{G}_{k,h}}{\partial \tau } ={\left\{ \begin{array}{ll} V_k &{} \text {on }\varGamma _{{}_{\mathrm J}}^k\,,\\ 0 &{} \text {on }\partial \varOmega \setminus \varGamma _{{}_{\mathrm J}}^k\,. \end{array}\right. } \end{aligned}$$

By taking \(\widetilde{G}_h=\widetilde{G}_{k,h} \) in (32) we get \(|\varGamma _{{}_{\mathrm J}}^k||V_k|^2=0\) and then \(V_k=0\), \(k\in N_{{}_{\mathrm I}}\). Next, we prove that \(V_h\) also vanishes. With this aim, for each \(k\in N\), we introduce the curve \(\gamma _k({\varvec{x}})\) with end points \({\varvec{x}}_k\) and \({\varvec{x}}\) and lying in \(\varGamma _{{}_{\mathrm N}}^k\) (see Fig. 13). For any \(k\in N\) we define \(\widetilde{G}_{k,h}\in \mathcal {Y}_h\) such that, on \(\varGamma _{{}_{\mathrm N}}\cup \varGamma _{{}_{\mathrm J}}\cup \varGamma _{{}_{\mathrm E}}\), satisfies

$$\begin{aligned} \widetilde{G}_{k,h}({\varvec{x}}):={\left\{ \begin{array}{ll} 0 &{} {\varvec{x}}\in e_h^0,\quad {\varvec{x}}\in \varGamma _{{}_{\mathrm J}}^i,\, 1\le i\le k,\quad {\varvec{x}}\in \varGamma _{{}_{\mathrm N}}^i, \,0\le i< k,\\ \displaystyle \int _{\gamma _k({\varvec{x}})}V_h&{}{\varvec{x}}\in \varGamma _{{}_{\mathrm N}}^k,\\ \displaystyle \int _{\varGamma _{{}_{\mathrm N}}^k} V_h&{} {\varvec{x}}\in \varGamma _{{}_{\mathrm J}}^i,\, k< i< N, \quad {\varvec{x}}\in \varGamma _{{}_{\mathrm N}}^i, \,k \le i< N. \end{array}\right. } \end{aligned}$$

On \(\varGamma _{{}_{\mathrm E}}\) we define \(\widetilde{G}_{k,h}\) as in Remark 3. Then, by taking \(\widetilde{G}_h=\widetilde{G}_{k,h} \) in (32) we get \(V_h=0\) on \(\varGamma _{{}_{\mathrm N}}^k\), \(\forall k \in N\), and thus \(V_h=0\) on \(\varGamma _{{}_{\mathrm N}}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermúdez, A., López-Rodríguez, B., Pena, F.J. et al. Numerical Solution of an Axisymmetric Eddy Current Model with Current and Voltage Excitations. J Sci Comput 91, 8 (2022). https://doi.org/10.1007/s10915-022-01780-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01780-4

Keywords

Mathematics Subject Classification

Navigation