Skip to main content
Log in

Optimal Strong Convergence of Finite Element Methods for One-Dimensional Stochastic Elliptic Equations with Fractional Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We investigate the strong convergence order of piecewise linear finite element methods for a class of one-dimensional semilinear stochastic elliptic equations with additive fractional white noise. For the Hurst index \(H\in (0,1)\), we approximate the fractional Brownian motion by two spectral expansions. We show that the resulting schemes are of order \(H+1\) in the mean-square sense if the element size h is taken proportionally to the truncation parameters in the spectral approximations. Numerical results confirm our theoretical prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Allen, E.J., Novosel, S.J., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations. Stocha. Stoch. Rep. 64, 117–142 (1998)

    Article  MathSciNet  Google Scholar 

  2. Burrage, K., Lenane, I., Lythe, G.: Numerical methods for second-order stochastic differential equations. SIAM J. Sci. Comput. 29, 245–264 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cao, Y., Hong, J., Liu, Z.: Approximating stochastic evolution equations with additive white and rough noises. SIAM J. Numer. Anal. 55, 1958–1981 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cao, Y., Hong, J., Liu, Z.: Finite element approximations for second-order stochastic differential equation driven by fractional Brownian motion. IMA J. Numer. Anal. 38, 184–197 (2018)

    Article  MathSciNet  Google Scholar 

  5. Cao, Y., Yang, H., Yin, L.: Finite element methods for semilinear elliptic stochastic partial differential equations. Numer. Math. 106, 181–198 (2007)

    Article  MathSciNet  Google Scholar 

  6. Chevillard, L., Roux, S.G., Lévêque, E., Mordant, N., Pinton, J.-F., Arnéodo, A.: Intermittency of velocity time increments in turbulence. Phys. Rev. Lett. 95, 064501 (2005)

    Article  Google Scholar 

  7. Davidson, J., Hashimzade, N.: Alternative frequency and time domain versions of fractional brownian motion. Economet. Theor. 24, 256–293 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Decreusefond, L.: Stochastic integration with respect to fractional Brownian motion, In Theory and applications of long-range dependence, 203-226 (2003)

  9. Decreusefond, L., Üstünel, A. S.: Stochastic Analysis of the Fractional Brownian Motion, Potential Analyis, pp 177–214 (1999)

  10. Dieker, A.B., Mandjes, M.: On spectral simulation of fractional Brownian motion. Probab. Engrg. Inform. Sci. 17, 417–434 (2003)

    Article  MathSciNet  Google Scholar 

  11. Du, Q., Zhang, T.: Numerical approximation of some linear stochastic partial differential equations driven by special additive noises. SIAM J. Numer. Anal. 40, 1421–1445 (2002)

    Article  MathSciNet  Google Scholar 

  12. Dzhaparidze, K., van Zanten, H.: A series expansion of fractional Brownian motion. Probab. Theory Related Fields 130, 39–55 (2004)

    Article  MathSciNet  Google Scholar 

  13. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2005)

    Article  MathSciNet  Google Scholar 

  14. Gil, A., Segura, J., Temme, N. M.: Numerical methods for special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (2007)

  15. Gil-Alana, L.A.: A fractional multivariate long memory model for the US and the Canadian real output. Econ. Lett. 81, 355–359 (2003)

    Article  Google Scholar 

  16. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products. Elsevier/Academic Press, Amsterdam (2007)

    MATH  Google Scholar 

  17. Gyöngy, I., Martínez, T.: On numerical solution of stochastic partial differential equations of elliptic type. Stochastics 78, 213–231 (2006)

    Article  MathSciNet  Google Scholar 

  18. Hao, Z., Zhang, Z.: Numerical approximation of optimal convergence for fractional elliptic equations with additive fractional Gaussian noise. SIAM/ASA J. Uncertain. Quantif. 9, 1013–1033 (2021)

    Article  MathSciNet  Google Scholar 

  19. Hu, Y., Øksendal, B., Zhang, T.: General fractional multiparameter white noise theory and stochastic partial differential equations. Comm. Partial Diff. Eq. 29, 1–23 (2004)

    Article  MathSciNet  Google Scholar 

  20. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin (1992)

    Book  Google Scholar 

  21. Lototsky, S.V., Rozovsky, B.L.: Stochastic Partial Differential Equations. Universitext, Springer, Cham (2017)

    Book  Google Scholar 

  22. Martínez, T., Sanz-Solé, M.: A lattice scheme for stochastic partial differential equations of elliptic type in dimension \(d\ge 4\). Appl. Math. Optim. 54, 343–368 (2006)

    Article  MathSciNet  Google Scholar 

  23. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer-Verlag, Berlin (2004)

    Book  Google Scholar 

  24. Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Springer-Verlag, Berlin (2008)

    Book  Google Scholar 

  25. Øksendal, B.: Stochastic Differential Equations. Universitext, Springer-Verlag, Berlin (2003)

    Book  Google Scholar 

  26. Pipiras, V.: Wavelet-based simulation of fractional Brownian motion revisited. Appl. Comput. Harmon. Anal. 19, 49–60 (2005)

    Article  MathSciNet  Google Scholar 

  27. Prigarin, S.M., Konstantinov, P.V.: Spectral numerical models of fractional Brownian motion. Russian J. Numer. Anal. Math. Modelling 24, 279–295 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Sanz-Solé, M., Torrecilla, I.: A fractional Poisson equation: existence, regularity and approximations of the solution. Stoch. Dyn. 9, 519–548 (2009)

    Article  MathSciNet  Google Scholar 

  29. Taqqu, M.S.: Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50, 53–83 (1979)

    Article  Google Scholar 

  30. Taqqu, M.S.: Fractional Brownian Motion and Long-range Dependence: In Theory and Applications of Long-range Dependence. Birkhäuser Boston, Boston (2003)

    MATH  Google Scholar 

  31. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  32. Wang, X., Qi, R., Jiang, F.: Sharp mean-square regularity results for SPDEs with fractional noise and optimal convergence rates for the numerical approximations. BIT 57, 557–585 (2017)

    Article  MathSciNet  Google Scholar 

  33. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  34. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43, 1363–1384 (2005)

    Article  MathSciNet  Google Scholar 

  35. Yoo, H.: Semi-discretization of stochastic partial differential equations on \({\mathbf{R}}^1\) by a finite-difference method. Math. Comp. 69, 653–666 (2000)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Z., Rozovskii, B., Karniadakis, G.E.: Strong and weak convergence order of finite element methods for stochastic PDEs with spatial white noise. Numer. Math. 134, 61–89 (2016)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z., Zeng, F., Karniadakis, G.E.: Optimal error estimates of spectral Petrov-Galerkin and collocation methods for initial value problems of fractional differential equations. SIAM J. Numer. Anal. 53(4), 2074–2096 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Cao was partially supported by the National Natural Science Foundation of China (grant No.12071073 and No.11671083). Hao and Zhang were partially supported by ARO/MURI grant W911NF-15-1-0562 and by the Air Force Office of Scientific Research under award FA9550-20-1-0056.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Verification of the Isometry of Wiener Integrals

In this section, we verify the itsometry (2.4). When \(H>1/2\), we apply (2.3), stochastic Fubini’s theorem, and integration-by-parts twice to obtain that

$$\begin{aligned} \mathbb {E}[\left( \int _{\mathcal {D}} e_k \,dW_{H }(x)\right) ^2]= & {} \int _{\mathcal {D}}\int _{\mathcal {D}}\frac{d}{dx} e_k(x)\frac{d}{dy} e_k(y) \mathbb {E}[W_{H}(x)W_{H}(y)]\,dx \,dy\\= & {} \frac{1}{2} \int _{\mathcal {D}}\int _{\mathcal {D}}\frac{d}{dx} e_k(x)\frac{d}{dy} e_k(y) (\left| x\right| ^{2H} +\left| y\right| ^{2H} - \left| x-y\right| ^{2H} )\,dx \,dy\\= & {} -\frac{1}{2} \int _{\mathcal {D}}\int _{\mathcal {D}}\frac{d}{dx} e_k(x)\frac{d}{dy} e_k(y) \left| x-y\right| ^{2H} \,dx \,dy\\= & {} - \frac{1}{2} \int _{\mathcal {D}}\int _{\mathcal {D}} e_k(x) e_k(y) \frac{d}{dx} \frac{d}{dy} \left| x-y\right| ^{2H} \,dx \,dy\\= & {} H(2H-1) \int _{\mathcal {D}}\int _{\mathcal {D}} {e_k(x) e_k(y) }{ \left| x-y\right| ^{2H-2}} \,dx \,dy. \end{aligned}$$

This is exactly the squared norm \(\Vert e_k\Vert ^2_{|R_H|,1}\) in [24] (Equation 1.6.6., Page 19). When \(H=1/2\), we may use the covariance function \(\mathbb {E}[W_{H}(x)W_{H}(y)]= \min (x,y)\) and integration-by-parts to obtain the isometry.

For \(0<H<1/2\), we can derive the isometry with more care. Applying (2.3), stochastic Fubini’s theorem, and integration-by-parts twice, we obtain that

$$\begin{aligned}&\mathbb {E}[\left( \int _{\mathcal {D}} e_k \,dW_{H }(x)\right) ^2]\\&\quad = -\frac{1}{2}\int _{\mathcal {D}}\int _{\mathcal {D}}\frac{d}{dx} e_k(x)\frac{d}{dy} e_k(y) \left| x-y\right| ^{2H} \,dx \,dy\\&\quad = -\frac{1}{2}\int _0^1\int _0^y\frac{d}{dx} e_k(x)\frac{d}{dy} e_k(y) (y-x)^{2H} \,dx \,dy\\&\qquad -\frac{1}{2}\int _0^1\int _y^1\frac{d}{dx} e_k(x)\frac{d}{dy} e_k(y) (x-y)^{2H} \,dx \,dy \\&\quad = -\frac{1}{2}\int _0^1\left( \int _0^y2H e_k(x)(y-x)^{2H-1}\,dx \right) \frac{d}{dy} e_k(y) \,dy\\&\qquad +\frac{1}{2}\int _0^1\left( \int _y^12H e_k(x)(x-y)^{2H-1}\,dx\right) \frac{d}{dy} e_k(y)\,dy\\&\quad =-H \int _0^1\left( \int _x^1 \frac{d}{dy} e_k(y)(y-x)^{2H-1}\,dy \right) e_k(x) \,dx\\&\qquad +H \int _0^1\left( \int _0^x \frac{d}{dy} e_k(y)(x-y)^{2H-1}\,dy\right) e_k(x)\,dx\\&\quad = H\Gamma (2H)\Big ((e_k,\,_xD_1^{2H}e_k)+(e_k,\,_0D_x^{2H}e_k)\Big )\\&\quad = H\Gamma (2H)\Big ((_0D_x^{H}e_k,\,_xD_1^{H}e_k)+(_xD_1^{H}e_k,\,_0D_x^{H}e_k)\Big )\\&\quad = \Gamma (2H+1)\cos (\pi H)\Vert _0D_x^{H}e_k\Vert _{L^2}^2. \end{aligned}$$

Here we have applied fractional integration by parts (see e.g., [37]) and used the formulation from [13] to obtain the last equality. Also, \(\,_0D_x^{\alpha }u\) and \(\,_xD_1^{\alpha }u\) denote the left- and right- Caputo fractional derivative with \(0< \alpha <1\) respectively, defined by

$$\begin{aligned} (\,_0D_x^{\alpha }u)(x)=\frac{1}{\Gamma (\alpha )}\int _0^x\frac{u'(\tau )}{(x-\tau )^{1-\alpha }}\,d\tau ,(\,_xD_1^{\alpha }u)(x)=-\frac{1}{\Gamma (\alpha )}\int _x^1\frac{u'(\tau )}{(\tau -x)^{1-\alpha }}\,d\tau . \end{aligned}$$

Some Useful Statements

In order to estimate \(\mathbb {E}[\left\| \zeta _2\right\| ^2] \) in Lemma 43, we need the following lemmas.

Lemma B1

([33]) For the Bessel function \(J_{\nu }\), where \(\nu >-1\), we have

$$\begin{aligned} J^2_{1+\nu }(z) + J^2_{\nu }(z)\approx & {} \frac{2}{\pi z} , \text{ for } \text{ large } \left| z\right| . \end{aligned}$$
(B.1)
$$\begin{aligned} 2\nu J_\nu (x)= & {} x J_{\nu +1}(x) +x J_{\nu -1}(x). \end{aligned}$$
(B.2)

Lemma B2

Let \(H\ne \frac{1}{2}\) and \(\alpha _n\) be the positive zeros of \(J_{-H}\) and \(\beta _n\) be the positive zeros of \(J_{1-H}\).

There exists a positive constant C independent of n such that

$$\begin{aligned} \sum _{m=1}^\infty \frac{1}{4m^4} \bigg (\frac{1}{m\pi + \alpha _n} +\frac{1}{m\pi - \alpha _n}\bigg )^2\le & {} C \frac{1}{\alpha _n^4}, \end{aligned}$$
(B.3)
$$\begin{aligned} \sum _{m=1}^\infty \frac{1}{4m^4} \bigg (\frac{1}{m\pi + \beta _n} +\frac{1}{m\pi - \beta _n}\bigg )^2\le & {} C \frac{1}{\beta _n^4}. \end{aligned}$$
(B.4)

Proof

First, we observe that

$$\begin{aligned} \frac{\pi ^2}{4m^4} \bigg (\frac{1}{m\pi + \alpha _n} +\frac{1}{m\pi - \alpha _n}\bigg )^2= & {} \frac{ 1 }{m^2} \bigg (\frac{1}{m^2 - t^2} \bigg )^2 \\= & {} \frac{1}{t^2(m^2 - t^2)^2} - \frac{1}{t^4(m^2 - t^2)} + \frac{1}{t^4 m^2 }, \end{aligned}$$

where \(t= \alpha _n/\pi \). According to (2.12), \(\alpha _n,\beta _n\ne n\pi \) and thus t is not an integer when \(H\ne \frac{1}{2}\).

By Formula 1.421.3 in [16] (Page 44), i.e.,

\(\displaystyle \sum _{k=1}^\infty \frac{1}{y^2-k^2} =\frac{\pi }{2}\frac{\cot (\pi y)}{y} -\frac{1}{2y^2}\),

we have

$$\begin{aligned} -\sum _{m=1}^\infty \frac{1}{t^4(m^2 - t^2)}= & {} \frac{1}{t^4} \bigg ( \frac{\pi \cot (\alpha _n)}{2t} -\frac{1}{2t^2} \bigg ) \le \frac{\pi \cot (\alpha _n)}{2t^5}. \end{aligned}$$
(B.5)

By Formula 1.423 of [16] (Page 44), i.e., \(\displaystyle \sum _{k=1}^\infty \frac{1}{(1-k^2l^2)^2}=\frac{\pi ^2}{4l^2} \csc ^2 (\frac{\pi }{l}) + \frac{\pi }{4l}\cot (\frac{\pi }{l}) -\frac{1}{2}\), we obtain that

$$\begin{aligned} \sum _{m=1}^\infty \frac{1}{t^2(m^2 - t^2)^2}= & {} \sum _{m=1}^\infty \frac{1}{t^6(m^2/t^2 - 1)^2} = \frac{1}{t^6} \bigg ( \frac{\pi ^2t^2}{4}\csc ^2(t\pi ) + \frac{t\pi }{4}\csc (t\pi )-\frac{1}{2} \bigg ). \qquad \nonumber \\ \end{aligned}$$
(B.6)

By the fact that \( \sum _{m=1}^\infty \frac{1}{ m^2 } = \frac{\pi ^2}{6}\), (B.5) and (B.6), we then have

$$\begin{aligned}&\sum _{m=1}^\infty \frac{\pi ^2}{4m^4} \bigg (\frac{1}{m\pi + \alpha _n} +\frac{1}{m\pi - \alpha _n}\bigg )^2 \\&\quad = \sum _{m=1}^\infty \frac{1}{t^2(m^2 - t^2)^2} - \sum _{m=1}^\infty \frac{1}{t^4(m^2 - t^2)} + \sum _{m=1}^\infty \frac{1}{t^4 m^2 } \\&\quad \le \frac{1}{t^6} \bigg ( \frac{\pi ^2t^2}{4}\csc ^2(t\pi ) + \frac{t\pi }{4}\csc (t\pi )-\frac{1}{2} \bigg ) + \frac{\pi \cot (\alpha _n)}{2t^5} +\frac{1}{t^4} \frac{\pi ^2}{6} \\&\quad \le C\frac{1}{t^4} + C\frac{1}{t^5} \le C \frac{1}{\alpha _n^4}. \end{aligned}$$

Here we have applied the estimate of zeros of the Bessel function (2.12) that \(\alpha _n\) is at the order of \(n\pi \). We then have proved (B.3). Similarly, we have (B.4). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Hao, Z. & Zhang, Z. Optimal Strong Convergence of Finite Element Methods for One-Dimensional Stochastic Elliptic Equations with Fractional Noise. J Sci Comput 91, 1 (2022). https://doi.org/10.1007/s10915-022-01779-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01779-x

Keywords

Mathematics Subject Classification

Navigation