Skip to main content
Log in

Sparse Spectral-Galerkin Method on An Arbitrary Tetrahedron Using Generalized Koornwinder Polynomials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a sparse spectral-Galerkin approximation scheme for solving the second-order partial differential equations on an arbitrary tetrahedron. Generalized Koornwinder polynomials are introduced on the reference tetrahedron as basis functions with their various recurrence relations and differentiation properties being explored. The method leads to well-conditioned and sparse linear systems whose entries can either be calculated directly by the orthogonality of the generalized Koornwinder polynomials for differential equations with constant coefficients or be evaluated efficiently via our recurrence algorithm for problems with variable coefficients. Clenshaw algorithms for the evaluation of any polynomial in an expansion of the generalized Koornwinder basis are also designed to boost the efficiency of the method. Finally, numerical experiments are carried out to illustrate the effectiveness of the proposed Koornwinder spectral method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Adjerid, S., Aiffa, M., Flaherty, J.: Hierarchical finite element bases for triangular and tetrahedral elements. Comput. Methods Appl. Mech. Eng. 190, 2925–2941 (2001)

    Article  Google Scholar 

  2. Andrews, G., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  3. Bao, W., Chen, L., Jiang, X., Ma, Y.: A Jacobi spectral method for computing eigenvalue gaps and their distribution statistics of the fractional Schrödinger operator. J. Comput. Phys. 421, 109733 (2020)

    Article  MathSciNet  Google Scholar 

  4. Beuchler, S., Pillwein, V.: Sparse shape functions for tetrahedral \(p\)-FEM using integrated Jacobi polynomials. Computing 80, 345–375 (2007)

    Article  MathSciNet  Google Scholar 

  5. Beuchler, S., Pillwein, V.: Completions to sparse shape functions for triangular and tetrahedral \(p\)-FEM. In: Domain Decomposition Methods in Science and Engineering XVII, pp. 435–442. Springer Berlin (2008)

  6. Beuchler, S., Schöberl, J.: New shape functions for triangular \(p\)-FEM using integrated Jacobi polynomials. Numerische Mathematik 103, 339–366 (2006)

    Article  MathSciNet  Google Scholar 

  7. Canuto, C., Quarteroni, A., Hussaini, M.Y., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)

    Book  Google Scholar 

  8. Carnevali, P., Morris, R., Tsuji, Y., Taylor, G.: New basis functions and computational procedures for \(p\)-version finite element analysis. Int. J. Numer. Methods Eng. 36, 3759–3779 (1993)

    Article  Google Scholar 

  9. Clenshaw, C.: A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9, 118–120 (1955)

    Article  MathSciNet  Google Scholar 

  10. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput. 6(4), 345–390 (1991)

    Article  MathSciNet  Google Scholar 

  11. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  12. Evans, L.: Partial Differential Equations, Second Edition. in: Graduate Studies in Mathematics, vol. 19, AMS, Rhode Island (1998)

  13. Gautschi, W.: Minimal solutions of three-term recurrence relations and orthogonal polynomials. Math. Comput. 36, 547–554 (1981)

    Article  MathSciNet  Google Scholar 

  14. Gautschi, W., Wimp, J.: Computing the Hilbert transform of a Jacobi weight function. BIT 27, 203–215 (1987)

    Article  MathSciNet  Google Scholar 

  15. Guo, B., Shen, J., Wang, L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59(5), 1011–1028 (2001)

    Article  MathSciNet  Google Scholar 

  16. Guo, B., Shen, J., Wang, L.: Optimal spectral-Galerkin methods using Generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  Google Scholar 

  17. Ivrii, V.: 100 years of Weyl’s law. Bull. Math. Sci. 6, 379–452 (2016)

    Article  MathSciNet  Google Scholar 

  18. Jakobson, D., Miller, S., Rivin, I., Rudnick, Z.: Level spacings for regular graphs. IMA Math. Appl. 109, 317–329 (1999)

    MATH  Google Scholar 

  19. Karniadakis, G., Sherwin, S.: Spectral/\(hp\) Element Methods for Computational Fluid Dynamics, 2nd edn. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2005)

  20. Koornwinder, T.: Two-variable analogues of the classical orthogonal polynomials. In: Askey, R.A. (ed.) Theory and Application of Special Functions, pp. 435–495. Academic Press, Cambridge (1975)

    Chapter  Google Scholar 

  21. Li, H., Shen, J.: Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle. Math. Comput. 79(271), 1621–1646 (2009)

    Article  MathSciNet  Google Scholar 

  22. Li, H., Wang, L.: A spectral method on tetrahedra using rational basis functions. Int. J. Numer. Anal. Model. 7(2), 330–355 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Li, H., Xu, Y.: Discrete Fourier analysis on a dodecahedron and a tetrahedron. Math. Comput. 78(266), 999–1029 (2008)

    Article  MathSciNet  Google Scholar 

  24. May, D., Gabriel, A.: A spectral element discretization on unstructured triangle/tetrahedral meshes for elastodynamics. EGU General Assembly Confe. Abstr. 19, 13218 (2017)

    Google Scholar 

  25. McCartin, B.J.: Eigenstructure of the equilateral triangle, Part i: The Dirichlet problem. SIAM Rev. 45(2), 267–287 (2003)

    Article  MathSciNet  Google Scholar 

  26. Olver, S., Townsend, A., Vasil, G.: A sparse spectral method on triangles. SIAM J. Sci. Comput. 41(6), A3728–A3756 (2019)

    Article  MathSciNet  Google Scholar 

  27. Peano, A.: Adaptive approximations in finite element structural analysis. Comput. Struct. 10, 333–342 (1979)

    Article  Google Scholar 

  28. Práger, M.: Eigenvalues and eigenfunctions of the Laplace operator on an equilateral triangle. Appl. Math. 43, 311–320 (1998)

    Article  MathSciNet  Google Scholar 

  29. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  30. Shan, W., Li, H.: Numerical comparison research of Laplace eigenvalue on arbitrary triangle using spectral method (in Chinese). J. Numer. Methods Comput. Appl. 36, 113–131 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Shan, W., Li, H.: The triangular spectral element method for Stokes eigenvalues. Math. Comput. 86(308), 2579–2611 (2017)

    Article  MathSciNet  Google Scholar 

  32. Shen, J., Tang, T., Wang, L.: Spectral Methods, Algorithms. Analysis and Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  33. Sherwin, S., Karniadakis, G.: A new triangular and tetrahedral basis for high-order (\(hp\)) finite element methods. Int. J. Numer. Methods Eng. 38, 3775–3802 (1995)

    Article  MathSciNet  Google Scholar 

  34. Sherwin, S., Karniadakis, G.: Tetrahedral \(hp\) finite elements: algorithms and flow simulation. J. Comput. Phys. 124, 14–45 (1996)

    Article  MathSciNet  Google Scholar 

  35. Szabó, B., Babuška, I.: Finite Element Analysis. Wiley, New York (1991)

    MATH  Google Scholar 

  36. Weyl, H.: Über die randwertaufgabe der strahlungstheorie und asymptotische spektralgeometrie. J. Reine Angew. Math 143, 177–202 (1913)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z.: How many numerical eigenvalues can we trust? J. Sci. Comput. 65, 455–466 (2015)

    Article  MathSciNet  Google Scholar 

  38. Zhu, J., Yin, C., Liu, Y., Liu, L., Yang, Z., Qiu, C.: 3D DC resistivity modelling based on spectral element method with unstructured tetrahedral grids. Geophys. J. Int. 220, 1748–1761 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The research of the first author is supported in part by the National Natural Science Foundation of China grants NSFC 12101035. The research of the second author is supported in part by the National Natural Science Foundation of China grants NSFC 11871455 and NSFC 11971016. The research of the third author is supported in part by the National Natural Science Foundation of China Grants NSFC 11871092, 12131005 and NSAF U1930402.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyuan Li.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Recurrence relations for increasing parameters

We derive some useful recurrence relations for generalized Koornwinder polynomials in Appendix 11. Firstly, we rewrite the Koornwinder polynomials in the collapsed coordinate to simplify the incoming proofs,

$$\begin{aligned} \mathcal {J}_{\varvec{\ell }}^{\varvec{\alpha }}(\varvec{\hat{x}})&= J_{\ell _1}^{\alpha _0,\alpha _1}(\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1} J_{\ell _2}^{2\ell _1+\alpha _0+\alpha _1+1,\alpha _2}(\eta )\nonumber \\&\quad \times \left( \frac{1-\zeta }{2}\right) ^{\ell _1+\ell _2} J_{\ell _3}^{2\ell _1+2\ell _2+\alpha _0+\alpha _1+\alpha _2+2,\alpha _3}(\zeta ), \end{aligned}$$
(A.1)

where

$$\begin{aligned} \xi =\dfrac{2\hat{x}_1}{1-\hat{x}_2-\hat{x}_3}-1,\quad \eta =\dfrac{2\hat{x}_2}{1-\hat{x}_3}-1,\quad \zeta =2\hat{x}_3-1. \end{aligned}$$
(A.2)

We also let

$$\begin{aligned} \begin{aligned}&\dot{\varvec{e}}_0=(1,0,0,0),\quad \dot{\varvec{e}}_1=(0,1,0,0),\quad \dot{\varvec{e}}_2=(0,0,1,0),\quad \dot{\varvec{e}}_3=(0,0,0,1). \end{aligned} \end{aligned}$$

All coefficient functions in appendixes are defined as in Lemma 2.12.4.

Lemma A.1

For any \(\varvec{\alpha }\in [-1,+\infty )^4\) and \(\varvec{\ell }\in \mathbb {N}_0^3\), the following recurrence relations hold:

$$\begin{aligned}&{\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }}(\varvec{\hat{x}}) = \sum \limits _{p=0}^1 \sum \limits _{q=0}^1 \sum \limits _{r=0}^1 \mathcal {A}_{p,q,r}^1 (\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( p,\, q-p,\, r-q\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_0} (\varvec{\hat{x}}), \end{aligned}$$
(A.3)
$$\begin{aligned}&{\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}})= \sum \limits _{p=0}^1 \sum \limits _{q=0}^1 \sum \limits _{r=0}^1 \mathcal {A}_{p,q,r}^2 (\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( p,\, q-p,\, r-q\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_1} (\varvec{\hat{x}}), \end{aligned}$$
(A.4)
$$\begin{aligned}&{\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}})= \sum \limits _{q=0}^1 \sum \limits _{r=0}^1 \mathcal {A}_{q,r}^3 (\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( 0,\,q,\,r-q\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_2}(\varvec{\hat{x}}), \end{aligned}$$
(A.5)
$$\begin{aligned}&{\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }}(\varvec{\hat{x}}) = \sum \limits _{r=0}^1 \mathcal {A}_r^4(\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( 0,0,r\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_3}(\varvec{\hat{x}}), \end{aligned}$$
(A.6)

where the corresponding coefficients are presented in Tables 1.

Table 1 The values of \(\mathcal {A}^1_{p,q,r},\) \(\mathcal {A}^2_{p,q,r}\), \(\mathcal {A}^3_{q,r}\) and \(\mathcal {A}^4_{r}\).

Proof

We take the proof of (A.5) as an example. Other identities shall be proved in a similar way. According to (2.9), (2.8) and (2.11), one has

$$\begin{aligned} \begin{aligned} \mathcal {J}_{\varvec{\ell }}^{\varvec{\alpha }}(\varvec{\hat{x}})&=J_{\ell _1}^{\alpha _0,\alpha _1}(\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1} \bigg [ b_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2} J_{\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2+1}(\eta ) \left( \frac{1-\zeta }{2}\right) ^{\ell _1+\ell _2} \\&\qquad \times \left( b_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} J_{\ell _3}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2|+3,\alpha _3}(\zeta )+ b_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} J_{\ell _3-1}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2|+3,\alpha _3}(\zeta )\right) \\&\qquad \qquad -b_{2,\ell _2}^{\alpha _2,2\ell _1+|\varvec{\alpha }^1|+1} J_{\ell _2-1}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2+1}(\eta ) \left( \frac{1-\zeta }{2}\right) ^{\ell _1+\ell _2-1} \\&\qquad \times \left( e_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+1,\alpha _3} J_{\ell _3}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2|+1,\alpha _3}(\zeta )+ e_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+1,\alpha _3} J_{\ell _3+1}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2|+1,\alpha _3}(\zeta ) \right) \bigg ]. \end{aligned} \end{aligned}$$

This completes the proof. \(\square \)

Appendix B. Recurrence relations for derivatives

Lemma B.1

For any \(\varvec{\alpha }\in [-1,+\infty )^4\) and \(\varvec{\ell }\in \mathbb {N}_0^3\), the following recurrence relations hold:

$$\begin{aligned}&\partial _{\hat{x}_1}{\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}})=2d_{\ell _1}^{\alpha _0,\alpha _1} {\mathcal {J}}_{\varvec{\ell }-(1,0,0)}^{\varvec{\alpha }+\dot{\varvec{e}}_{0}+\dot{\varvec{e}}_1} (\varvec{\hat{x}}), \end{aligned}$$
(B.1)
$$\begin{aligned}&\partial _{\hat{x}_2} {\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}})= \sum \limits _{p=0}^1 \mathcal {D}^2_p(\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( p,1-p,0\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_{0}+\dot{\varvec{e}}_2} (\varvec{\hat{x}}), \end{aligned}$$
(B.2)
$$\begin{aligned}&\left( \partial _{\hat{x}_2}- \partial _{\hat{x}_1}\right) {\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}})= \sum \limits _{p=0}^1 \mathcal {D}^{21}_p(\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( p,1-p,0\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_{1}+\dot{\varvec{e}}_2} (\varvec{\hat{x}}), \end{aligned}$$
(B.3)
$$\begin{aligned}&\partial _{\hat{x}_3} {\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}})=\sum \limits _{p=0}^1 \sum \limits _{q=0}^1\mathcal {D}^3_{p,q}(\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( p,\,q-p,\,1-q\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_{0}+\dot{\varvec{e}}_3} (\varvec{\hat{x}}), \end{aligned}$$
(B.4)
$$\begin{aligned}&\left( \partial _{\hat{x}_1}- \partial _{\hat{x}_3}\right) {\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}}) =\sum \limits _{p=0}^1 \sum \limits _{q=0}^1\mathcal {D}^{13}_{p,q}(\varvec{\ell },\varvec{\alpha }) {\mathcal {J}}_{\varvec{\ell }-\left( p,\,q-p,\,1-q\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_{1}+\dot{\varvec{e}}_3} (\varvec{\hat{x}}), \end{aligned}$$
(B.5)
$$\begin{aligned}&\left( \partial _{\hat{x}_3}- \partial _{\hat{x}_2}\right) {\mathcal {J}}_{\varvec{\ell }}^{\varvec{\alpha }} (\varvec{\hat{x}})=\sum \limits _{q=0}^1 \mathcal {D}_q^{32}(\varvec{\ell },\varvec{\alpha }){\mathcal {J}}_{\varvec{\ell }-\left( 0,q,1-q\right) }^{{\varvec{\alpha }}+\dot{\varvec{e}}_{2}+\dot{\varvec{e}}_3}(\varvec{\hat{x}}). \end{aligned}$$
(B.6)

With the notations

$$\begin{aligned} \begin{aligned}&\rho _{\varvec{\ell }}^{\varvec{\alpha }} := 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1}-\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1},\quad \kappa _{\varvec{\ell }}^{\varvec{\alpha }} := \ell _1 b_{2,\ell _1}^{\alpha _1,\alpha _0}-2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _0,\alpha _1+1},\\&\theta _{\varvec{\ell }}^{\varvec{\alpha }} := 2d_{\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2} e_{1,\ell _2-1}^{\alpha _2, 2\ell _1+|\varvec{\alpha }^1|+2} - \ell _2 b_{2,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2}, \end{aligned} \end{aligned}$$

the corresponding coefficients are presented as follows.

$$\begin{aligned}&\mathcal {D}_0^2(\varvec{\ell },\varvec{\alpha })=2d_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{1,\ell _1}^{\alpha _0,\alpha _1}, \\&\mathcal {D}_1^2(\varvec{\ell },\varvec{\alpha }) =\tfrac{ \left( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1} \right) b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}}{ b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1}}. \end{aligned}$$
$$\begin{aligned}&\mathcal {D}_0^{21}(\varvec{\ell },\varvec{\alpha }) = \mathcal {D}_0^{2}(\varvec{\ell },\varvec{\alpha }),\\&\mathcal {D}_1^{21}(\varvec{\ell },\varvec{\alpha }) = \tfrac{\left( \ell _1 b_{2,\ell _1}^{\alpha _1,\alpha _0} -2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _0,\alpha _1+1} \right) b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} - 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _1,\alpha _0} e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}}{ b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1}}. \end{aligned}$$
$$\begin{aligned}&\mathcal {D}^3_{0,0}(\varvec{\ell },\varvec{\alpha }) = 2d_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} b_{1,\ell _1}^{\alpha _0,\alpha _1} b_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2},\\&\mathcal {D}^3_{0,1}(\varvec{\ell },\varvec{\alpha }) = \tfrac{ b_{1,\ell _1}^{\alpha _0,\alpha _1} \theta _{\varvec{\ell }}^{\varvec{\alpha }} b_{1,\ell _3}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2| +2,\alpha _3} +2 d_{\ell _3}^{2|\varvec{\ell }^2| + |\varvec{\alpha }^2| +2,\alpha _3} b_{1,\ell _1}^{\alpha _0,\alpha _1} b_{2,\ell _2}^{2\ell _1+|\varvec{\alpha }^1| +1,\alpha _2} e_{2,\ell _3-1}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2| +2,\alpha _3+1} }{b_{1,\ell _3}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2|+2,\alpha _3+1}},\\&\mathcal {D}^3_{1,0}(\varvec{\ell },\varvec{\alpha }) = 2d_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|,\alpha _2}, \end{aligned}$$
$$\begin{aligned}&\mathcal {D}^3_{1,1}(\varvec{\ell },\varvec{\alpha })\\&= \frac{ \left( \rho _{\varvec{\ell }}^{\varvec{\alpha }} + b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2-1}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2} \theta _{\varvec{\ell }}^{\varvec{\alpha }} \right) b_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} +2b_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|,\alpha _2} d_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2| +2,\alpha _3} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^2|,\alpha _2} e_{2,\ell _3-1}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2|+2,\alpha _3+1}}{b_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|,\alpha _2} b_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+1,\alpha _3+1}}. \end{aligned}$$
$$\begin{aligned}&\mathcal {D}^{13}_{0,0}(\varvec{\ell },\varvec{\alpha }) = -\mathcal {D}^{3}_{0,0}(\varvec{\ell },\varvec{\alpha }),\\&\mathcal {D}^{13}_{0,1}(\varvec{\ell },\varvec{\alpha }) = -\mathcal {D}^{3}_{0,1}(\varvec{\ell },\varvec{\alpha }),\\&\mathcal {D}^{13}_{1,0}(\varvec{\ell },\varvec{\alpha }) = 2d_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} b_{2,\ell _1}^{\alpha _1,\alpha _0} e_{2,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|,\alpha _2}, \end{aligned}$$
$$\begin{aligned}&\mathcal {D}^{13}_{1,1}(\varvec{\ell },\varvec{\alpha }) = \tfrac{ \left( b_{2,\ell _1}^{\alpha _1,\alpha _0} e_{2,\ell _2-1}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2} \theta _{\varvec{\ell }}^{\varvec{\alpha }}-\kappa _{\varvec{\ell }}^{\varvec{\alpha }} \right) b_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} +2b_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|,\alpha _2} d_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2| +2,\alpha _3} b_{2,\ell _1}^{\alpha _1,\alpha _0} e_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^2|,\alpha _2} e_{2,\ell _3-1}^{2|\varvec{\ell }^2| +|\varvec{\alpha }^2|+2,\alpha _3+1}}{b_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|,\alpha _2} b_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+1,\alpha _3+1}}. \end{aligned}$$
$$\begin{aligned}&\mathcal {D}^{32}_{0}(\varvec{\ell },\varvec{\alpha }) = 2d_{\ell _3}^{2|\varvec{\ell }^2| + |\varvec{\alpha }^2|+2,\alpha _3} b_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2}, \end{aligned}$$

Proof

It follows from (A.2) that

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _{\hat{x}_1} = \dfrac{8}{(1-\eta )(1-\zeta )} \partial _{\xi },\\ \partial _{\hat{x}_2} = \dfrac{4(1+\xi )}{(1-\eta )(1-\zeta )} \partial _{\xi } + \dfrac{4}{1-\zeta } \partial _{\eta },\\ \partial _{\hat{x}_3} = \dfrac{4(1+\xi )}{(1-\eta )(1-\zeta )} \partial _{\xi } + \dfrac{2(1+\eta )}{1-\zeta } \partial _{\eta } +2\partial _{\zeta }. \end{array}\right. } \end{aligned}$$
(B.7)

We take the proof of (B.2) as an example. Other identities shall be proved in a similar way. To begin with, when \(\ell _1 = 0,\) one has

$$\begin{aligned} \begin{aligned} \partial _{\hat{x}_2}\mathcal {J}^{\alpha _0,\alpha _1,\alpha _2,\alpha _3}_{0,\ell _2,\ell _3}&= 2 \partial _\eta J_{\ell _2} ^{ |\varvec{\alpha }^1| +1,\alpha _2} (\eta ) \left( \frac{1-\zeta }{2}\right) ^{\ell _2-1} J_{\ell _3}^{2\ell _2+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta )\\&=2d_{\ell _2}^{ |\varvec{\alpha }^1| +1,\alpha _2} J_{\ell _2-1} ^{ |\varvec{\alpha }^1| +2,\alpha _2+1} (\eta ) \left( \frac{1-\zeta }{2}\right) ^{\ell _2-1} J_{\ell _3}^{2\ell _2+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta )\\&=2d_{\ell _2}^{ |\varvec{\alpha }^1| +1,\alpha _2} \mathcal {J}_{0,\ell _2-1,\ell _3}^{\alpha _0+1,\alpha _1,\alpha _2+1,\alpha _3}. \end{aligned} \end{aligned}$$

When \(\ell _1>1,\) a direct computation yields

$$\begin{aligned} \begin{aligned}&\partial _{\hat{x}_2}\mathcal {J}^{\varvec{\alpha }}_{\varvec{\ell }} = \bigg [ (1+\xi ) \partial _{\xi } J_{\ell _1} ^{\alpha _0,\alpha _1} (\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1-1} J_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} (\eta ) \\&\quad + 2 J_{\ell _1} ^{\alpha _0,\alpha _1} (\xi ) \partial _\eta \big [ \left( \frac{1-\eta }{2}\right) ^{\ell _1} J_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} (\eta ) \big ]\bigg ] \times \left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|-1} J_{\ell _3}^{2|\varvec{\ell }^2|+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta )\\&= \bigg [ \left( d_{\ell _1}^{\alpha _0,\alpha _1} (1+\xi ) J_{\ell _1-1}^{\alpha _0+1,\alpha _1+1}(\xi )-\ell _1 J_{\ell _1}^{\alpha _0,\alpha _1}(\xi ) \right) \left( \frac{1-\eta }{2}\right) ^{\ell _1-1} J_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} (\eta ) \\&\quad +2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} J_{\ell _1}^{\alpha _0,\alpha _1} (\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1} J_{\ell _2-1} ^{2\ell _1+ |\varvec{\alpha }^1| +2,\alpha _2+1} (\eta ) \bigg ] \left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|-1} J_{\ell _3}^{2|\varvec{\ell }^2|+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta ). \end{aligned} \end{aligned}$$
(B.8)

Recalling (2.8) and (2.12), we have

$$\begin{aligned} \begin{aligned}&d_{\ell _1}^{\alpha _0,\alpha _1} (1+\xi ) J_{\ell _1-1}^{\alpha _0+1,\alpha _1+1}(\xi )-\ell _1 J_{\ell _1}^{\alpha _0,\alpha _1}(\xi ) \\&\quad = 2d_{\ell _1}^{\alpha _0,\alpha _1} \left( e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi ) -e_{2,\ell _1-1}^{\alpha _0+1,\alpha _1} J_{\ell _1}^{\alpha _0+1,\alpha _1}(\xi )\right) \\&\qquad -\ell _1 \left( b_{1,\ell _1}^{\alpha _0,\alpha _1} J_{\ell _1}^{\alpha _0+1,\alpha _1}(\xi ) + b_{2,\ell _1}^{\alpha _0,\alpha _1} J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi ) \right) \\&\quad = \left( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}\right) J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi ).\quad \left( \because -2d_{\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _1-1}^{\alpha _0+1,\alpha _1} -\ell _1 b_{1,\ell _1}^{\alpha _0,\alpha _1} = 0\right) \end{aligned} \end{aligned}$$

Substituting the above formula into (B.8) and using (2.8), (2.9) and (2.11), one has

$$\begin{aligned}&\partial _{\hat{x}_2} \mathcal {J}_{\varvec{\ell }}^{\varvec{\alpha }} = \bigg [ \left( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}\right) J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1-1} J_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} (\eta ) \\&\quad +2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} \left( b_{1,\ell _1}^{\alpha _0,\alpha _1} J_{\ell _1}^{\alpha _0+1,\alpha _1}(\xi ) +b_{2,\ell _1}^{\alpha _0,\alpha _1} J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi )\right] \left( \frac{1-\eta }{2}\right) ^{\ell _1} J_{\ell _2-1} ^{2\ell _1+ |\varvec{\alpha }^1| +2,\alpha _2+1} (\eta ) \bigg ] \\&\quad \times \left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|-1} J_{\ell _3}^{2|\varvec{\ell }^2|+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta )\\&=2d_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{1,\ell _1}^{\alpha _0,\alpha _1} \mathcal {J}_{\ell _1,\ell _2-1,\ell _3}^{\alpha _0+1,\alpha _1,\alpha _2+1,\alpha _3}\\&\quad + J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1-1} \left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|-1} J_{\ell _3}^{2|\varvec{\ell }^2|+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta )\\&\quad \times \bigg [ \left( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}\right) J_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} (\eta ) \\&\quad +2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} \frac{1-\eta }{2} J_{\ell _2-1} ^{2\ell _1+ |\varvec{\alpha }^1| +2,\alpha _2+1} (\eta ) \bigg ] \\&=2d_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{1,\ell _1}^{\alpha _0,\alpha _1} \mathcal {J}_{\ell _1,\ell _2-1,\ell _3}^{\alpha _0+1,\alpha _1,\alpha _2+1,\alpha _3}\\&\quad + J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1-1} \left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|-1} J_{\ell _3}^{2|\varvec{\ell }^2|+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta )\\&\quad \times \bigg [ \left( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}\right) \\&\quad \times \left( b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} J_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} (\eta ) -b_{2,\ell _2}^{\alpha _2, 2\ell _1+ |\varvec{\alpha }^1| +1} J_{\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} (\eta ) \right) \\&\quad + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} \left( e_{1,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} J_{\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}(\eta )\right. \\&\quad \left. +e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} J_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}(\eta ) \right) \bigg ]\\&=2d_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{1,\ell _1}^{\alpha _0,\alpha _1} \mathcal {J}_{\ell _1,\ell _2-1,\ell _3}^{\alpha _0+1,\alpha _1,\alpha _2+1,\alpha _3} + J_{\ell _1-1}^{\alpha _0+1,\alpha _1}(\xi ) \left( \frac{1-\eta }{2}\right) ^{\ell _1-1}\\&\quad \times \left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|-1} J_{\ell _3}^{2|\varvec{\ell }^2|+ |\varvec{\alpha }^2| +2,\alpha _3}(\zeta )\\&\quad \times \bigg [ \left( ( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}) b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} \right) \\&\quad \times J_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}(\eta )\\&\quad + \left( ( \ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1} - 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1}) b_{2,\ell _2}^{\alpha _2,2\ell _1+ |\varvec{\alpha }^1| +1} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} \right) \\&\quad \times J_{\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}(\eta ) \bigg ]. \end{aligned}$$

Note that \(b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1}\ne 0\) when \(\ell _1>0.\) It is readily checked that

$$\begin{aligned} \begin{aligned}&\left( ( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}) b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} \right) \\&\quad \times J_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}(\eta )\\&\quad \,+ \left( ( \ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1} - 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1}) b_{2,\ell _2}^{\alpha _2,2\ell _1+ |\varvec{\alpha }^1| +1} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} \right) \\&\quad \times J_{\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}(\eta ) \\&=\frac{( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}) b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}}{ b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1}}\\&\quad \times \left( b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1} J_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} (\eta ) + b_{2,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1} J_{\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1} (\eta ) \right) \\&=\frac{( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}) b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}}{ b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1}}\\&\quad \times J_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1} (\eta ). \end{aligned} \end{aligned}$$

Thus, it concludes that

$$\begin{aligned} \begin{aligned}&\partial _{\hat{x}_2} \mathcal {J}_{\varvec{\ell }}^{\varvec{\alpha }} = 2d_{\ell _2} ^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{1,\ell _1}^{\alpha _0,\alpha _1} \mathcal {J}_{\ell _1,\ell _2-1,\ell _3}^{\alpha _0+1,\alpha _1,\alpha _2+1,\alpha _3}\\&\quad +\frac{( 2d_{\ell _1}^{\alpha _0,\alpha _1} e_{1,\ell _1-1}^{\alpha _1,\alpha _0+1} -\ell _1 b_{2,\ell _1}^{\alpha _0,\alpha _1}) b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} + 2d_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2} b_{2,\ell _1}^{\alpha _0,\alpha _1} e_{2,\ell _2-1}^{2\ell _1+ |\varvec{\alpha }^1| +1,\alpha _2+1}}{ b_{1,\ell _2}^{2\ell _1+ |\varvec{\alpha }^1| ,\alpha _2+1}}\\&\qquad \mathcal {J}_{\ell _1-1,\ell _2,\ell _3}^{\alpha _0+1,\alpha _1,\alpha _2+1,\alpha _3}. \end{aligned} \end{aligned}$$

This ends the proof. \(\square \)

Appendix C. Coefficients in the three-term recurrence relations

By introducing the notations,

$$\begin{aligned}&\tau _{1,\varvec{\ell }}^{\varvec{\alpha }} := \tfrac{c_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2},\quad&\tau _{2,\varvec{\ell }}^{\varvec{\alpha }} := \tfrac{c_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2},\quad&\tau _{3,\varvec{\ell }}^{\varvec{\alpha }} := \tfrac{c_{3,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2},\\&\tau _{4,\varvec{\ell }}^{\varvec{\alpha }} := -\tfrac{a_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2},\quad&\tau _{5,\varvec{\ell }}^{\varvec{\alpha }} := \tfrac{(1-a_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3})}{2},\quad&\tau _{6,\varvec{\ell }}^{\varvec{\alpha }} := -\tfrac{a_{3,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2},\\&\tau _{7,\varvec{\ell }}^{\varvec{\alpha }} := \tfrac{g_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3}}{2},\quad&\tau _{8,\varvec{\ell }}^{\varvec{\alpha }} := \tfrac{g_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3}}{2},\quad&\tau _{9,\varvec{\ell }}^{\varvec{\alpha }} := \tfrac{g_{3,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3}}{2}, \end{aligned}$$

we write the coefficients \(\mathscr {C}_{r}(\varvec{\ell },\varvec{\alpha })\) as

$$\begin{aligned} \left[ \mathscr {C}_{-1}(\varvec{\ell },\varvec{\alpha }), \mathscr {C}_{0}(\varvec{\ell },\varvec{\alpha }), \mathscr {C}_{1}(\varvec{\ell },\varvec{\alpha }) \right] = \bigg [ \frac{a_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2}, \frac{1+a_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2}, \frac{a_{3,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}}{2} \bigg ], \end{aligned}$$

and list in Table 2 the coefficients \(\mathscr {C}_{p,q,r}(\varvec{\ell },\varvec{\alpha })\), \(\mathscr {C}_{q,r}(\varvec{\ell },\varvec{\alpha })\) used in Theorem 2.1.

Table 2 The values of \(\mathscr {C}_{p,q,r}(\varvec{\ell },\varvec{\alpha })\), \(\mathscr {C}_{q,r}(\varvec{\ell },\varvec{\alpha })\) and \(\mathscr {C}_{r}(\varvec{\ell },\varvec{\alpha })\).

Proof

We shall take the proof of (2.20) as an example to explain the derivations of these coefficients. From (A.2), one obtains

$$\begin{aligned} \hat{x}_2 = \frac{1+\eta }{2} \frac{1-\zeta }{2}. \end{aligned}$$

It then follows from (2.7), (2.10) and (2.13) that

$$\begin{aligned} \hat{x}_2 \mathcal {J}_{\varvec{\ell }}^{\varvec{\alpha }}&= J_{\ell _1}^{\alpha _0,\alpha _1}(\xi ) \left( \frac{1-\eta }{2} \right) ^{\ell _1} \frac{1+\eta }{2} J_{\ell _2}^{2\ell _1+ |\varvec{\alpha }^1|+1,\alpha _2} (\eta )\left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|+1}J_{\ell _3}^{2 |\varvec{\ell }^2| +|\varvec{\alpha }^2|+2,\alpha _3}(\zeta )\\&=J_{\ell _1}^{\alpha _0,\alpha _1}(\xi ) \left( \frac{1-\eta }{2} \right) ^{\ell _1} \bigg [ \frac{a_{1,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2}}{2} J_{\ell _2+1}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2} (\eta ) \left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|+1}\\&\quad \times \bigg ( c_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} J_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+4,\alpha _3}(\zeta )+ c_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} J_{\ell _3-1}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+4,\alpha _3}(\zeta )\\&\quad + c_{3,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3} J_{\ell _3-2}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+4,\alpha _3}(\zeta ) \bigg )\\&\quad + \frac{1+a_{2,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2}}{2} J_{\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2} (\eta )\left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|} \\&\quad \times \bigg ( -\frac{a_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2| +2,\alpha _3}}{2} J_{\ell _3+1}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}(\zeta )+ \frac{1-a_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2| +2,\alpha _3}}{2} J_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}(\zeta )\\&\quad - \frac{a_{3,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2| +2,\alpha _3}}{2} J_{\ell _3-1}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|+2,\alpha _3}(\zeta ) \bigg )\\&\quad + \frac{a_{3,\ell _2}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2}}{2} J_{\ell _2-1}^{2\ell _1+|\varvec{\alpha }^1|+1,\alpha _2} (\eta )\left( \frac{1-\zeta }{2}\right) ^{|\varvec{\ell }^2|-1} \\&\quad \times \left( g_{1,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3} J_{\ell _3+2}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3}(\zeta )+ g_{2,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3} J_{\ell _3+1}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3}(\zeta )\right. \\&\quad \left. + g_{3,\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3} J_{\ell _3}^{2|\varvec{\ell }^2|+|\varvec{\alpha }^2|,\alpha _3}(\zeta ) \right) \bigg ]. \end{aligned}$$

The proof is completed. \(\square \)

Appendix D. Exact eigenvalues of homogeneous Dirichlet Laplacian on \(\mathcal {T}_F\)

We first claim that the generalized sine functions are eigenfunctions of the Dirichlet Laplacian on \(\mathcal {T}_F\). Actually, motivated by the study of [23], we introduce homogeneous coordinates \(\mathbf {s}\in \mathbb {R}_H^4\) with

$$\begin{aligned} \mathbb {R}_H^4:= \left\{ \mathbf {s}=(s_0,s_1,s_2,s_3)\in \mathbb {R}^4: |\mathbf {s}| = 0 \right\} ,\quad | \mathbf {s}| = \sum \limits _{j=0}^3 s_j. \end{aligned}$$
(D.1)

For convenience, we adopt the convention of using bold letters, such as \(\mathbf {s}\) and \(\mathbf {k}\), to denote points represented in homogeneous coordinates. The transformation between \(\varvec{x}\in \mathbb {R}^3\) and \(\mathbf {s}\in \mathbb {R}^4_H\) is then defined by [23, (3.1)],

$$\begin{aligned} {\left\{ \begin{array}{ll} x_1 = s_2+s_3,\\ x_2 = s_3+s_1,\\ x_3 = s_1 + s_2, \end{array}\right. } \end{aligned}$$
(D.2)

and \(s_0=-s_1-s_2-s_3.\)

We further define the function on \(\Omega _H=\left\{ \mathbf {s}\in \mathbb {R}^4_H: -1\le s_i-s_j\le 1, 0\le i,j\le 3\right\} \) that

$$\begin{aligned} \begin{aligned}&\phi _{\mathbf {k}}(\mathbf {s}):=e^{\frac{\pi \mathrm {i}}{2} \mathbf {k}\cdot \mathbf {s}},\quad \mathbf {k}\in \Lambda _0,\\&\Lambda _0:=\left\{ \mathbf {k}\in \mathbb {R}^4_H \cap \mathbb {Z}^4: k_0\equiv k_1\equiv k_2 \equiv k_3 \,\,(\mathrm{{mod}}\, 4), k_0<k_1<k_2<k_3 \right\} . \end{aligned} \end{aligned}$$
(D.3)

Here \(\mathrm {i}\) is the imaginary number satisfying \(\mathrm {i}^2=-1.\) Let \(\mathcal {G}\) be the permutation group of four elements. For \(\mathbf {k}\in \mathbb {R}^4_{H}\) and \(\sigma \in \mathcal {G},\) the permutation of the elements in \(\mathbf {k}\) by \(\sigma \) is denoted by \(\mathbf {k}\sigma .\) The generalized sine functions are then defined as [23, Definition 4.2]

$$\begin{aligned} \mathrm{TS}_{\mathbf {k}}(\mathbf {s}):= \frac{1}{24} \sum \limits _{\sigma \in \mathcal {G}} (-1)^{|\sigma |} \phi _{\mathbf {k}\sigma }(\mathbf {s}),\quad \mathbf {k}\in \Lambda _0, \end{aligned}$$
(D.4)

where \(|\sigma |\) represents the number of inversions in \(\sigma .\) Thus, we arrive at the following lemma.

Lemma D.1

The generalized sine functions \(\mathrm{TS}_{\mathbf {k}}(\mathbf {s}), \mathbf {k}\in \Lambda _0\) are the eigenfunctions of the Laplacian on \(\mathcal {T}_F\) subject to the homogeneous Dirichlet boundary condition:

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta \mathrm{TS}_{\mathbf {k}}(\mathbf {s}) = \mu _{\mathbf {k}} \mathrm{TS}_{\mathbf {k}}(\mathbf {s}),\quad &{}\mathrm{{in}}\,\mathcal {T}_F,\\ \mathrm{TS}_{\mathbf {k}}(\mathbf {s})=0,\quad &{}\mathrm{{on}}\,\partial \mathcal {T}_F, \end{array}\right. } \end{aligned}$$
(D.5)

where

$$\begin{aligned} \mu _{\mathbf {k}}=\frac{\pi ^2|\mathbf {k}|^2}{4},\quad |\mathbf {k}|^2=\sum \limits _{j=0}^3 k_j^2. \end{aligned}$$
(D.6)

Proof

Due to the symmetry of \(\mathrm{TS}_{\mathbf {k}}(\mathbf {s})\), it vanishes on \(\partial \mathcal {T}_F.\) From the transformation (D.2), we have

$$\begin{aligned} \begin{aligned}&\partial _{s_1}-\partial _{s_0} = \partial _{x_2}+\partial _{x_3},\quad \partial _{s_2}-\partial _{s_0} = \partial _{x_3}+\partial _{x_1},\quad \partial _{s_3}-\partial _{s_0} = \partial _{x_1}+\partial _{x_2},\\&\partial _{s_1}-\partial _{s_2} = \partial _{x_2}-\partial _{x_1},\quad \partial _{s_2}-\partial _{s_3} = \partial _{x_3}-\partial _{x_2},\quad \partial _{s_3}-\partial _{s_1} = \partial _{x_1}-\partial _{x_3}. \end{aligned} \end{aligned}$$

One easily obtains an equivalent expression of the Laplacian operator in homogenous coordinates that

$$\begin{aligned} \Delta = \frac{1}{4} \sum \limits _{1\le i< m\le 3} \left( \left( \partial _{x_i}+\partial _{x_m}\right) ^2 + \left( \partial _{x_i}-\partial _{x_m}\right) ^2 \right) = \frac{1}{4} \sum \limits _{0\le j< n\le 3} \left( \partial _{s_j} - \partial _{s_n}\right) ^2. \end{aligned}$$
(D.7)

Applying (D.7) on \(\phi _{\mathbf {k}}\) yields

$$\begin{aligned} \begin{aligned} -\Delta \phi _{\mathbf {k}}(\mathbf {s})&= -\frac{1}{4} \sum \limits _{0\le j< n\le 3} \left( \partial _{s_j} - \partial _{s_n}\right) ^2 \phi _{\mathbf {k}}(\mathbf {s})= \frac{\pi ^2}{16} \sum \limits _{0\le j< n\le 3} \left( k_j - k_n\right) ^2 \phi _{\mathbf {k}}(\mathbf {s})\\&= \frac{\pi ^2}{32} \sum \limits _{\begin{array}{c} 0\le j, n\le 3 \\ j\ne n \end{array}} \left( k_j - k_n\right) ^2 \phi _{\mathbf {k}}(\mathbf {s})\\&= \frac{\pi ^2}{32} \left( 4\sum \limits _{j=0}^3 k_j^2 + 4\sum \limits _{n=0}^3 k_n^2 -2 \left( \sum \limits _{j=0}^3 k_j \right) \left( \sum \limits _{n=0}^3 k_n \right) \right) \phi _{\mathbf {k}}(\mathbf {s})\\&= \frac{\pi ^2}{4} \sum \limits _{j=0}^3 k_j^2 \phi _{\mathbf {k}}(\mathbf {s})= \frac{\pi ^2}{4} |\mathbf {k}|^2 \phi _{\mathbf {k}}(\mathbf {s}). \end{aligned} \end{aligned}$$

Therefore, by the definition of generalized sine functions (D.4), it holds that

$$\begin{aligned} \begin{aligned} -\Delta \mathrm{TS}_{\mathbf {k}}(\mathbf {s})&= \frac{1}{24} \sum \limits _{\sigma \in \mathcal {G}} (-1)^{|\sigma |+1} \Delta \phi _{\mathbf {k}\sigma }(\mathbf {s})= \frac{\pi ^2}{4} \frac{1}{24} \sum \limits _{\sigma \in \mathcal {G}} (-1)^{|\sigma |} |\mathbf {k}\sigma |^2 \phi _{\mathbf {k}\sigma }(\mathbf {s})\\&=\frac{\pi ^2 |\mathbf {k}|^2 }{4} \frac{1}{24} \sum \limits _{\sigma \in \mathcal {G}} (-1)^{|\sigma |} \phi _{\mathbf {k}\sigma }(\mathbf {s})= \frac{\pi ^2 |\mathbf {k}|^2 }{4} \mathrm{TS}_{\mathbf {k}}(\mathbf {s}). \end{aligned} \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, L., Li, H. & Zhang, Z. Sparse Spectral-Galerkin Method on An Arbitrary Tetrahedron Using Generalized Koornwinder Polynomials. J Sci Comput 91, 22 (2022). https://doi.org/10.1007/s10915-022-01778-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01778-y

Keywords

Mathematics Subject Classification

Navigation