Skip to main content
Log in

Arbitrarily High-Order Maximum Bound Preserving Schemes with Cut-off Postprocessing for Allen–Cahn Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop and analyze a class of maximum bound preserving schemes for approximately solving Allen–Cahn equations. We apply a kth-order single-step scheme in time (where the nonlinear term is linearized by multi-step extrapolation), and a lumped mass finite element method in space with piecewise rth-order polynomials and Gauss–Lobatto quadrature. At each time level, a cut-off post-processing is proposed to eliminate extra values violating the maximum bound principle at the finite element nodal points. As a result, the numerical solution satisfies the maximum bound principle (at all nodal points), and the optimal error bound \(O(\tau ^k+h^{r+1})\) is theoretically proved for a certain class of schemes. These time stepping schemes include algebraically stable collocation-type methods, which could be arbitrarily high-order in both space and time. Moreover, combining the cut-off strategy with the scalar auxiliary value (SAV) technique, we develop a class of energy-stable and maximum bound preserving schemes, which is arbitrarily high-order in time. Numerical results are provided to illustrate the accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time differencing schemes. arXiv preprint: arXiv:2005.11465, to appear in SIAM Review (2020)

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for anti-phase boundary motion and its application to anti-phase domain coarsening. Acta Metall. 27, 1085–1095 (1979)

    Article  Google Scholar 

  3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chen, L.-Q.: Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  5. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293 (2004)

    Article  MathSciNet  Google Scholar 

  6. Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34(5), 471–481 (2016). https://doi.org/10.4208/jcm.1603-m2014-0017

    Article  MathSciNet  MATH  Google Scholar 

  7. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14(6), 1517–1534 (2016). https://doi.org/10.4310/CMS.2016.v14.n6.a3

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation. SIAM J. Numer. Anal. 57(2), 875–898 (2019). https://doi.org/10.1137/18M118236X

    Article  MathSciNet  MATH  Google Scholar 

  9. Liao, H.L., Tang, T., Zhou, T.: On energy stable, maximum-principle preserving, second order BDF scheme with variable steps for the Allen–Cahn equation. SIAM J. Numer. Math. 58(4), 2294–2314 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67(221), 73–85 (1998)

    Article  MathSciNet  Google Scholar 

  11. Liu, H., Yu, H.: Maximum-principle-satisfying third order discontinuous Galerkin schemes for Fokker–Planck equations. SIAM J. Sci. Comput. 36(5), 2296–2325 (2014). https://doi.org/10.1137/130935161

    Article  MathSciNet  Google Scholar 

  12. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). https://doi.org/10.1137/S003614450036757X

    Article  MathSciNet  MATH  Google Scholar 

  13. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Press, Singapore (2011)

    Book  Google Scholar 

  14. Liu, X.-D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33(2), 760–779 (1996)

    Article  MathSciNet  Google Scholar 

  15. Qiu, J., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26(3), 907–929 (2005)

    Article  MathSciNet  Google Scholar 

  16. Xu, Z.: Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem. Math. Comput. 83(289), 2213–2238 (2014). https://doi.org/10.1090/S0025-5718-2013-02788-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MathSciNet  Google Scholar 

  18. Isherwood, L., Grant, Z.J., Gottlieb, S.: Strong stability preserving integrating factor Runge–Kutta methods. SIAM J. Numer. Anal. 56(6), 3276–3307 (2018). https://doi.org/10.1137/17M1143290

    Article  MathSciNet  MATH  Google Scholar 

  19. Ju, L., Li, X., Qiao, Z., Yang, J.: Maximum bound principle preserving integrating factor runge-kutta methods for semilinear parabolic equations. arXiv preprint arXiv:2010.12165 (2020)

  20. van der Vegt, J.J.W., Xia, Y., Xu, Y.: Positivity preserving limiters for time-implicit higher order accurate discontinuous Galerkin discretizations. SIAM J. Sci. Comput. 41(3), 2037–2063 (2019). https://doi.org/10.1137/18M1227998

    Article  MathSciNet  MATH  Google Scholar 

  21. Lu, C., Huang, W., Vleck, E.S.V.: The cutoff method for the numerical computation of nonnegative solutions of parabolic PDEs with application to anisotropic diffusion and Lubrication-type equations. J. Comput. Phys. 242, 24–36 (2013)

    Article  MathSciNet  Google Scholar 

  22. Kreuzer, C.: A note on why enforcing discrete maximum principles by a simple a posteriori cutoff is a good idea. Numer. Methods Partial Differ. Equ. 30(3), 994–1002 (2014). https://doi.org/10.1002/num.21854

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, B., Yang, J., Zhou, Z.: Arbitrarily high-order exponential cut-off methods for preserving maximum principle of parabolic equations. SIAM J. Sci. Comput. 42(6), 3957–3978 (2020). https://doi.org/10.1137/20M1333456

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  25. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, 2nd edn., p. 370. Springer, Berlin (2006)

    MATH  Google Scholar 

  26. Ehle, B.L.: In: p. ProQuest LLC, Ann Arbor, MI, (ed.) On Padé Approximations to the Exponential Function and A-stable Methods for the Numerical Solution of Initial Value Problems. Thesis (Ph.D.)-University of Waterloo (Canada) (1969)

  27. Brenner, P., Crouzeix, M., Thomée, V.: Single-step methods for inhomogeneous linear differential equations in Banach space. RAIRO Anal. Numér. 16(1), 5–26 (1982)

    Article  MathSciNet  Google Scholar 

  28. Ostermann, A., Roche, M.: Runge–Kutta methods for partial differential equations and fractional orders of convergence. Math. Comput. 59(200), 403–420 (1992). https://doi.org/10.2307/2153064

    Article  MathSciNet  MATH  Google Scholar 

  29. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied Mathematics, vol. 37, p. 654. Springer, Berlin (2000)

    MATH  Google Scholar 

  30. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Springer Series in Computational Mathematics 14, 614 Springer (2010). https://doi.org/10.1007/978-3-642-05221-7. Stiff and differential-algebraic problems, Second revised edition, paperback

  31. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  32. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK-SAV methods for the Allen–Cahn and Cahn–Hilliard equations. SIAM J. Sci. Comput. 41(6), 3703–3727 (2019). https://doi.org/10.1137/19M1264412

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018). https://doi.org/10.1137/17M1159968

    Article  MathSciNet  MATH  Google Scholar 

  34. Gong, Y., Zhao, J., Wang, Q.: Arbitrarily high-order unconditionally energy stable schemes for thermodynamically consistent gradient flow models. SIAM J. Sci. Comput. 42(1), 135–156 (2020). https://doi.org/10.1137/18M1213579

    Article  MathSciNet  MATH  Google Scholar 

  35. Lin, Q., Lin, J.: Finite Element Methods: Accuracy and Improvement, vol. 1. Elsevier, Amsterdam (2006)

    Google Scholar 

Download references

Acknowledgements

The work of J. Yang is supported by National Natural Science Foundation of China (NSFC) Grant No. 11871264, Natural Science Foundation of Guangdong Province (2018A0303130123), and NSFC/Hong Kong RRC Joint Research Scheme (NFSC/RGC 11961160718), and the research of Z. Yuan and Z. Zhou is partially supported by Hong Kong RGC grant (No. 15304420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Extension to Multi-dimensional Domains

Appendix: Extension to Multi-dimensional Domains

Now we describe the numerical methods in a multi-dimensional rectangular domain \(\Omega = (a, b)^d \subset \mathbb {R}^d\), with \(d\ge 2\).

Using the setting in one dimension, we denote by \(a=x_{0}<x_{1}<\dots <x_{M r}=b\) a partition of the interval [ab] with a uniform mesh size \(\displaystyle h=x_{ir}-x_{(i-1)r} = (b-a)/M\) for all \(i=1,\dots ,M\). We let \(x_{(i-1)r+j}\) and \(w_{j}\), \(j=0,\dots ,r\), be the quadrature points and weights of the \((r+1)\)-point Gauss–Lobatto quadrature on the subinterval \([x_{(i-1)r}, x_{ir}]\). Moreover, we define the global quadrature weights \(w_i\), with \(i=0,\ldots , Mr\), by (2.4). Now, \(\Omega \) is separated into \(M^d\) subrectangles by all grid points \((x_{j_1 r}, \ldots , x_{j_dr})\), with \(0 \le j_i \le M\) and \(i=1,\dots , d\). We denote this partition by \({\mathcal {T}}_h\), and note that \(\displaystyle h\) is the mesh size of the partition \({\mathcal {T}}_h\). Then we apply the tensor-product Lagrange finite elements on the partition \({\mathcal {T}}_h\).

Let \(Q^r\) be space of polynomials in the variables \({\fancyscript{x}}_1, \ldots , {\fancyscript{x}}_d\), with real coefficients and of degree at most r in each variable, i.e.,

$$\begin{aligned} Q^r = \Big \{ \sum _{0\le \beta _1,\beta _2,\ldots ,\beta _d\le r} c_{\beta _1 \beta _2\ldots \beta _d} {\fancyscript{x}}_1^{\beta _1} \cdots {\fancyscript{x}}_d^{\beta _d}, \quad \text {with}~~ c_{\beta _1 \beta _2\ldots \beta _d} \in \mathbb {R} \Big \}. \end{aligned}$$

The \(H^1\)-conforming tensor-product finite element space, denoted by \(S_h^r\), is

$$\begin{aligned} S_h^r = \{ v\in H^1(\Omega ): v\vert _K \in Q^r \,\, \text {for all} \,\, K\in {\mathcal {T}}_h \}. \end{aligned}$$

We apply the Gauss–Lobatto quadrature in each subrectangle to approximate of the inner product, i.e.,

$$\begin{aligned} (f,g)_h := \sum _{j_1=0}^{M_1 r}\cdots \sum _{j_d=0}^{M_d r} w_{j_1}\cdots w_{j_d} f(x_{ j_1}, \ldots , x_{j_d}) g(x_{ j_1}, \ldots , x_{j_d}) . \end{aligned}$$

This discrete inner product induces a norm

$$\begin{aligned} \Vert f_h\Vert _h=\sqrt{(f_h,f_h)_h} \quad \forall \, f_h\in S_h^r. \end{aligned}$$

Similarly as the one-dimensional case, the discrete Laplacian \(-\Delta _h: S_h^r\rightarrow S_h^r\) is defined such that

$$\begin{aligned} (-\Delta _h v_h, w_h)_h = (\nabla v_h, \nabla w_h)\qquad \text {for all} ~~v_h,w_h\in S_h^r. \end{aligned}$$
(6.1)

Then at n-th time level, with given \(u_h^{n-k}, \ldots , u_h^{n-1} \in S_h^r\), we find an intermediate solution \({\hat{u}}_h^n\in S_h^r\) such that

$$\begin{aligned} {\hat{u}}_h^n = \sigma (-\tau \Delta _h) u_h^{n-1} +\tau \sum _{i=1}^m p_i(-\tau \Delta _h) \Big (\sum _{j=1}^{k} L_j (t_{ni}) \Pi _h f(u_h^{n-j})\Big ) \end{aligned}$$
(6.2)

where \(t_{ni}=t_{n-1}+c_i\tau \), and \(\Pi _h:C({\overline{\Omega }})\rightarrow S_h^r\) is the Lagrange interpolation operator. In order to impose the maximum bound, we apply the cut-off postprocessing: find \(u_h^n \in S_h^r\) such that

$$\begin{aligned} u_h^n = \Pi _h \min \big (\max \big ({\hat{u}}_h^n, - \alpha \big ) , \alpha \big ) . \end{aligned}$$
(6.3)

Then the proof of Lemma 3 is still valid in higher dimension. Next, we give the the proof of Lemma 4 which requires some technical argument.

Proof of Lemma 4

To begin with, we let \({\hat{K}} = (0,1)^d\) be a unit reference square and recall that the local Gauss–Lobatto quadrature is accurate for any function \(w\in Q^{2r-1}({\hat{K}})\). Using the homogeneous Neumann boundary condition and (6.1), we obtain

$$\begin{aligned} \begin{aligned}&\quad (\Pi _h \Delta v - \Delta _h \Pi _h v, \varphi _h )_h \\&= \Big (( \Delta v , \varphi _h )_h - ( \Delta v , \varphi _h )\Big ) + \Big (( \nabla v , \nabla \varphi _h ) - (\nabla \Pi _h v, \nabla \varphi _h )\Big )\\&=: I + II \end{aligned} \end{aligned}$$
(6.4)

For any \(K_{i_1, \dots i_d} = \{{\fancyscript{x}}\in \Omega \subset \mathbb {R}^d : {\fancyscript{x}}_k \in (x_{i_k-1}, x_{i_k}), \text{ for } k = 1,2,\dots ,d\} \in {\mathcal {T}}_h\), there exists a affine transformation from K to \(\hat{K}\), which maps \(x_i\) to \(\hat{x}_i\) ,\(v({\fancyscript{x}})\) to \(\hat{v}(\hat{{\fancyscript{x}}})\) and \(\phi _h({\fancyscript{x}})\) to \(\hat{\phi }_h(\hat{{\fancyscript{x}}})\). Then the Bramble–Hilbert lemma leads to

$$\begin{aligned} |I |&= |( \Delta v , \varphi _h )_h - ( \Delta v , \varphi _h ) |\\&= \Big |\sum _{i_1, \dots , i_d=1}^M \Big (Q_{K_{i_1 \dots i_d}}^{GL} (\Delta v \varphi _h) - \int _{K_{i_1 \dots i_d}} (\Delta v ) \varphi _h \,\mathrm {d}x\Big ) \Big |\\&\leqslant Ch^{d-2}\sum _{i_1, \dots , i_d=1}^M \Vert \Delta \hat{v} \hat{\phi }_h\Vert _{W^{2r, 1}(\hat{K})} \leqslant Ch^{d-2}\sum _{i_1, \dots , i_d=1}^M |\Delta \hat{v} \hat{\phi }_h|_{W^{2r, 1}(\hat{K})} \\&\le C h^{2r} \sum _{i_1, \dots , i_d=1}^M |\Delta v \varphi _h |_{W^{2r,1}(K_{i_1\dots i_d})} \\&\le C h^{2r} \sum _{i=1}^M \Vert v \Vert _{H^{2r+2}(K_{i_1, \dots i_d})} \Vert \varphi _h \Vert _{H^{r}(K_{i_1 \dots i_d})} \end{aligned}$$

Then we apply the inverse inequality to derive

$$\begin{aligned} |I |&\le Ch^{r+1} \sum _{i=1}^M \Vert v \Vert _{H^{2r+2}(K_{i_1, \dots i_d})} \Vert \varphi _h \Vert _{H^{1}(K_{i_1 \dots i_d})} \\&\le Ch^{r+1} \Vert v \Vert _{H^{2r+2}(\Omega )} \Vert \varphi _h \Vert _{H^{1}(\Omega )}. \end{aligned}$$

Similar argument also leads to the estimate for the term II in (6.4):

$$\begin{aligned} II&= ( \nabla (v- \Pi _h v), \nabla \varphi _h ) = \sum _{K\in {\mathcal {K}}}^M \int _{K} \nabla (v- \Pi _h v)\cdot \nabla \varphi _h \,\mathrm {d}{\fancyscript{x}}. \end{aligned}$$

The case \(r=1\) has been studied in [35, Theorem 4.1], so we only consider the cases that \(r\ge 2\). Here we claim that

$$\begin{aligned} \int _K\nabla (w- \Pi _h w)\cdot \nabla \varphi _h \,\mathrm {d}{\fancyscript{x}}= 0\quad \text {for any} ~~v \in P^{r+1}(K), \phi _h \in Q^{r}(K). \end{aligned}$$

To show this, we only need to show it works on the reference square \({\hat{K}}=(0,1)^d\), and affine transformations will generalize the result to any triangle K. Furthermore, by the symmetry, we only need to show that

$$\begin{aligned} B(w, \psi _h) := \int _{{\hat{K}}} \partial _{{\fancyscript{x}}_1} (w- \Pi _h w)\cdot \partial _{{\fancyscript{x}}_1} \psi _h \,\mathrm {d}{\fancyscript{x}}= 0, \end{aligned}$$
(6.5)

for any \(w\in P^{r+1}({\hat{K}}), \psi _h \in Q^{r}({\hat{K}})\).

Note that \(\Pi _h w \in Q^r({\hat{K}})\). Then for any \(w \in P^{r+1}({\hat{K}}) \cap Q^{r}({\hat{K}})\), \(w = \Pi w\), so \(B(w, \psi _h) = 0\) for all \(w\in P^{r+1}({\hat{K}}) \cap Q^{r}({\hat{K}}), \psi _h \in Q^r(e)\). Moreover, for \(w({\fancyscript{x}}) = ({\fancyscript{x}}_k)^{r+1}\) with \(k \ne 1\), we have \(\partial _{{\fancyscript{x}}_1} (w- \Pi _h w) = 0\) which also leads to \(B(w, \psi _h) = 0\).

For \(w = {\fancyscript{x}}_1^{r+1}\), and \(\psi _h = {\fancyscript{x}}_1^{k_1}\cdot \cdots \cdot {\fancyscript{x}}_d^{k_d}\), \(k_i\leqslant r\) which is a basis of \(Q^{r}({\hat{K}})\),

$$\begin{aligned} B(w, \psi _h)&= \int _0^1 \partial _{{\fancyscript{x}}_1} ({\fancyscript{x}}_1^{r+1}- \Pi _h {\fancyscript{x}}_1^{r+1})\partial _{{\fancyscript{x}}_1}({\fancyscript{x}}_1^{k_1})\mathrm {d}{\fancyscript{x}}_1 \int _0^1{\fancyscript{x}}_2^{k_2}\mathrm {d}{\fancyscript{x}}_2\cdots \int _0^1{\fancyscript{x}}_d^{k_d}\mathrm {d}{\fancyscript{x}}_d\\&= \prod _{i=2}^d\left( \frac{1}{1+k_i}\right) \int _0^1 \partial _{{\fancyscript{x}}_1} ({\fancyscript{x}}_1^{r+1}- \Pi _h {\fancyscript{x}}_1^{r+1})\partial _{{\fancyscript{x}}_1}({\fancyscript{x}}_1^{k_1})\mathrm {d}{\fancyscript{x}}_1\\&= -\prod _{i=2}^d\left( \frac{1}{1+k_i}\right) \int _0^1 ({\fancyscript{x}}_1^{r+1}- \Pi _h {\fancyscript{x}}_1^{r+1})\partial _{{\fancyscript{x}}_1}^2({\fancyscript{x}}_1^{k_1})\mathrm {d}{\fancyscript{x}}_1. \end{aligned}$$

For \(k_1 \leqslant 1\), \(\partial _{{\fancyscript{x}}_1}^2{\fancyscript{x}}_i^{k_1}=0\), so \(B(w, \psi ) = 0\). For \(k_1 \geqslant 2\), we can get

$$\begin{aligned} \begin{aligned} \int _0^1 ({\fancyscript{x}}_1^{r+1}- \Pi _h {\fancyscript{x}}_1^{r+1})&\partial _{{\fancyscript{x}}_1}^2({\fancyscript{x}}_1^{k_1})\mathrm {d}{\fancyscript{x}}_1 = k_1(k_1-1)\int _0^1 ({\fancyscript{x}}_1^{r+1}- \Pi _h {\fancyscript{x}}_1^{r+1}){\fancyscript{x}}_1^{k_1-2}\mathrm {d}{\fancyscript{x}}_1\\&= k_1(k_1-1)\int _0^1 ({\fancyscript{x}}_1^{r+k_1-1}- {\fancyscript{x}}_1^{k_1-2}\Pi _h {\fancyscript{x}}_1^{r+1})\mathrm {d}{\fancyscript{x}}_1. \end{aligned} \end{aligned}$$

Note that \({\fancyscript{x}}_1^{r+k_1-1}\) is a polynomial of order at most \(2r-1\), \({\fancyscript{x}}_1^{k_1-2}\Pi _h {\fancyscript{x}}_1^{r+1}\) is a polynomial of order at most \(2r-2\), and \({\fancyscript{x}}_1^{r+k_1-1} - {\fancyscript{x}}_1^{k_1-2}\Pi _h {\fancyscript{x}}_1^{r+1} = 0\) at quadrature points. We know that

$$\begin{aligned} \int _0^1 ({\fancyscript{x}}_1^{r+k_1-1}- {\fancyscript{x}}_1^{k_1-2}\Pi _h {\fancyscript{x}}_1^{r+1})\mathrm {d}{\fancyscript{x}}_1 = 0. \end{aligned}$$

Therefore \(B(w, \psi _h) = 0\) for \(w={\fancyscript{x}}_1^{r+1}\), \(\psi _h \in Q^r({\hat{K}})\).

As a result, we conclude that \(B(w, \psi _h) = 0\) for all \(\psi _h\in Q^r({\hat{K}})\), \(w \in P^{r+1}({\hat{K}})\cap Q^r({\hat{K}})\) or \(w = {\fancyscript{x}}_k^{r+1}\) for \(1\leqslant k \leqslant d\), and hence

$$\begin{aligned} B(w, \psi _h) = 0,\quad \forall w \in P^{r+1}({\hat{K}}), \psi _h \in Q^r({\hat{K}}). \end{aligned}$$

Together with Bramble–Hilbert lemma, we derive that for any \(K \in {\mathcal {T}}_h\)

$$\begin{aligned} |\int _{K} \nabla (v- \Pi _h v)\cdot \nabla \varphi _h \,\mathrm {d}{\fancyscript{x}}|&=h^{d-2} |\int _{\hat{K}} \nabla (\hat{v}- \Pi _h \hat{v})\cdot \nabla \hat{\varphi }_h \,\mathrm {d}{\fancyscript{x}}|\\&\leqslant C h^{d-2} |\hat{v} |_{H^{r+2}(\hat{K})}\Vert \nabla \hat{\phi }_h\Vert _{L^2(\hat{K})} \\&\leqslant C h^{r+1} |v |_{H^{r+2}(K)} \Vert \nabla \phi _h\Vert _{L^2(K)}. \end{aligned}$$

Do the summation over all subrectangle we arrive at

$$\begin{aligned} |II |\leqslant C h^{r+1}\Vert v\Vert _{H^{r+2}(\Omega )}\Vert \phi _h\Vert _{H^1(\Omega )}. \end{aligned}$$

This completes the proof of Lemma 4. \(\square \)

Then Lemmas 3 and 4 immediately implies Theorem 5 in higher dimensions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yuan, Z. & Zhou, Z. Arbitrarily High-Order Maximum Bound Preserving Schemes with Cut-off Postprocessing for Allen–Cahn Equations. J Sci Comput 90, 76 (2022). https://doi.org/10.1007/s10915-021-01746-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01746-y

Keywords

Navigation