Skip to main content
Log in

An Anisotropic Recovery-Based Error Estimator for Adaptive Discontinuous Galerkin Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new recovery-based anisotropic error estimator for discontinuous Galerkin finite element approximations of advection-diffusion problems. We propose a metric-based algorithm for mesh adaptation which is driven by this error estimator. Numerical verification on several test cases, both in the steady and in the unsteady setting, shows the effectiveness of the algorithm in capturing the intrinsic directionalities of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Allora, M.: A recovery-based error estimator for advection-diffusion-reaction problems solved with discontinuous finite elements. Master’s thesis, Politecnico di Milano (2019)

  2. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  3. Baker, G.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31(137), 45–59 (1977)

    Article  MathSciNet  Google Scholar 

  4. Belhamadia, Y., Fortin, A., Bourgault, Y.: On the performance of anisotropic mesh adaptation for scroll wave turbulence dynamics in reaction-diffusion systems. J. Comput. Appl. Math. 271, 233–246 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)

    Article  MathSciNet  Google Scholar 

  6. Cai, Z., He, C., Zhang, S.: Improved ZZ a posteriori error estimators for diffusion problems: discontinuous elements. Appl. Numer. Math. 159, 174–189 (2021)

    Article  MathSciNet  Google Scholar 

  7. Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49(5), 1761–1787 (2011)

    Article  MathSciNet  Google Scholar 

  8. Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cangiani, A., Georgoulis, E.H., Giani, S., Metcalfe, S.: \(hp\)-adaptive discontinuous Galerkin methods for non-stationary convection-diffusion problems. Comput. Math. Appl. 78(9), 3090–3104 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cangiani, A., Georgoulis, E.H., Metcalfe, S.: Adaptive discontinuous Galerkin methods for nonstationary convection-diffusion problems. IMA J. Numer. Anal. 34(4), 1578–1597 (2014)

    Article  MathSciNet  Google Scholar 

  11. Carstensen, C., Verfürth, R.: Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36(5), 1571–1587 (1999)

    Article  MathSciNet  Google Scholar 

  12. Clerici, F., Ferro, N., Marconi, S., Micheletti, S., Negrello, E., Perotto, S.: Anisotropic adapted meshes for image segmentation: application to three-dimensional medical data. SIAM J. Imaging Sci. 13(4), 2189–2212 (2020)

    Article  MathSciNet  Google Scholar 

  13. Creusé, E., Nicaise, S.: A posteriori error estimator based on gradient recovery by averaging for discontinuous Galerkin methods. J. Comput. Appl. Math. 234(10), 2903–2915 (2010)

    Article  MathSciNet  Google Scholar 

  14. Creusé, E., Nicaise, S.: A posteriori error estimator based on gradient recovery by averaging for convection-diffusion-reaction problems approximated by discontinuous Galerkin methods. IMA J. Numer. Anal. 33(1), 212–241 (2013)

    Article  MathSciNet  Google Scholar 

  15. Destuynder, P., Métivet, B.: Explicit error bounds for a nonconforming finite element method. In: Finite element methods (Jyväskylä, 1997), Lecture Notes in Pure and Appl. Math., Vol. 196, pp. 95–111. Dekker, New York (1998)

  16. Di Pietro, D.A., Droniou, J.: The hybrid high-order method for polytopal meshes, MS&A. Modeling, Simulation and Applications, Vol. 19. Springer, Cham (2020). Design, analysis, and applications

  17. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods, Mathématiques & Applications (Berlin), Vol. 69. Springer, Heidelberg (2012)

  18. Dompierre, J., Vallet, M.G., Bourgault, Y., Fortin, M., Habashi, W.G.: Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. III. Unstructured meshes. Int. J. Numer. Methods Fluids 39(8), 675–702 (2002)

  19. Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J. (eds.) Computing Methods in Applied Sciences: Second International Symposium December 15–19, 1975, pp. 207–216. Springer Berlin Heidelberg, Berlin, Heidelberg (1976)

  20. El khaoulani, R., Bouchard, P.O.: An anisotropic mesh adaptation strategy for damage and failure in ductile materials. Finite Elem. Anal. Des. 59, 1–10 (2012)

    Article  MathSciNet  Google Scholar 

  21. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Vol. 159. Springer-Verlag, New York (2004)

  22. Ern, A., Stephansen, A.F., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)

    Article  MathSciNet  Google Scholar 

  23. Farrell, P.E., Micheletti, S., Perotto, S.: An anisotropic Zienkiewicz-Zhu-type error estimator for 3D applications. Int. J. Numer. Methods Eng. 85(6), 671–692 (2011)

    Article  MathSciNet  Google Scholar 

  24. Ferro, N., Micheletti, S., Perotto, S.: An optimization algorithm for automatic structural design. Comput. Methods Appl. Mech. Eng. 372, 113335, 29 (2020)

  25. Formaggia, L., Micheletti, S., Perotto, S.: Anisotropic mesh adaption in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math. 51(4), 511–533 (2004)

    Article  MathSciNet  Google Scholar 

  26. Formaggia, L., Perotto, S.: New anisotropic a priori error estimates. Numer. Math. 89(4), 641–667 (2001)

    Article  MathSciNet  Google Scholar 

  27. Frey, P.J., George, P.L.: Mesh Generation. Application to Finite Elements, 2nd edn. ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ (2008)

  28. George, P.L., Borouchaki, H.: Delaunay triangulation and meshing. Editions Hermès, Paris, Application to finite elements, Translated from the 1997 French original by the authors. P. J. Frey and Scott A, Canann (1998)

  29. Georgoulis, E.H., Hall, E., Houston, P.: Discontinuous Galerkin methods for advection-diffusion-reaction problems on anisotropically refined meshes. SIAM J. Sci. Comput. 30(1), 246–271 (2007/2008)

  30. Giani, S., Schötzau, D., Zhu, L.: An a-posteriori error estimate for \(hp\)-adaptive DG methods for convection-diffusion problems on anisotropically refined meshes. Comput. Math. Appl. 67(4), 869–887 (2014)

    Article  MathSciNet  Google Scholar 

  31. Hecht, F.: BAMG: bidimensional anisotropic mesh generator. https://www.ljll.math.upmc.fr/hecht/ftp/bamg/bamg.pdf

  32. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Houston, P., Schwab, C., Süli, E.: Discontinuous \(hp\)-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MathSciNet  Google Scholar 

  34. Houston, P., Süli, E.: A note on the design of \(hp\)-adaptive finite element methods for elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 194(2–5), 229–243 (2005)

    Article  MathSciNet  Google Scholar 

  35. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    Article  MathSciNet  Google Scholar 

  36. Li, X.D., Wiberg, N.E.: A posteriori error estimate by element patch post-processing, adaptive analysis in energy and \(L_2\) norms. Comput. Struct. 53(4), 907–919 (1994)

    Article  Google Scholar 

  37. Loseille, A., Dervieux, A., Alauzet, F.: Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations. J. Comput. Phys. 229(8), 2866–2897 (2010)

    Article  MathSciNet  Google Scholar 

  38. Maisano, G., Micheletti, S., Perotto, S., Bottasso, C.L.: On some new recovery-based a posteriori error estimators. Comput. Methods Appl. Mech. Eng. 195(37–40), 4794–4815 (2006)

    Article  MathSciNet  Google Scholar 

  39. Micheletti, S., Perotto, S.: Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator. Comput. Methods Appl. Mech. Eng. 195(9–12), 799–835 (2006)

    Article  MathSciNet  Google Scholar 

  40. Micheletti, S., Perotto, S.: Anisotropic adaptation via a Zienkiewicz-Zhu error estimator for 2D elliptic problems. In: Kreiss, G., Lötstedt, P., Målqvist, A., Neytcheva, M. (eds.) Numerical Mathematics and Advanced Applications, pp. 645–653. Springer-Verlag, Berlin Heidelberg (2010)

    Google Scholar 

  41. Micheletti, S., Perotto, S.: Space-time adaptation for purely diffusive problems in an anisotropic framework. Int. J. Numer. Anal. Model. 7(1), 125–155 (2010)

    MathSciNet  Google Scholar 

  42. Micheletti, S., Perotto, S., Farrell, P.E.: A recovery-based error estimator for anisotropic mesh adaptation in CFD. Bol. Soc. Esp. Mat. Apl. SeMA 50, 115–137 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Perotto, S., Formaggia, L. (eds.): New Challenges in Grid Generation and Adaptivity for Scientific Computing, SEMA SIMAI Springer, Vol. 5. Springer, Cham (2015)

  44. Picasso, M.: An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24(4), 1328–1355 (2003)

    Article  MathSciNet  Google Scholar 

  45. Picasso, M.: Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator. Commun. Numer. Methods Eng. 19(1), 13–23 (2003)

    Article  MathSciNet  Google Scholar 

  46. Rangarajan, A., May, G., Dolejsi, V.: Adjoint-based anisotropic \(hp\)-adaptation for discontinuous Galerkin methods using a continuous mesh model. J. Comput. Phys. 409, 109321, 23 (2020)

  47. Rodríguez, R.: Some remarks on Zienkiewicz-Zhu estimator. Numer. Methods Partial Differ. Equ. 10(5), 625–635 (1994)

    Article  MathSciNet  Google Scholar 

  48. Roos, H.G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations, Springer Series in Computational Mathematics, Vol. 24, 2nd edn. Springer-Verlag, Berlin (2008). Convection-diffusion-reaction and flow problems

  49. Shishkin, G.I.: Approximation of the solutions of singularly perturbed boundary value problems with a corner boundary layer. Dokl. Akad. Nauk SSSR 296(1), 39–43 (1987)

    Google Scholar 

  50. Wheeler, M.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)

    Article  MathSciNet  Google Scholar 

  51. Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineering analysis. Int. J. Numer. Methods Eng. 24, 337–357 (1987)

    Article  MathSciNet  Google Scholar 

  52. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. II: Error estimates and adaptivity. Int. J. Numer. Methods Eng. 33, 1365–1382 (1992)

Download references

Acknowledgements

We would like to acknowledge Mario Allora who carried out the first numerical assessments in [1] under the supervision of the three authors. The financial support of INdAM-GNCS Projects 2020 is gratefully acknowledged by Simona Perotto. Nicola Ferro thanks Fondazione Fratelli Confalonieri and Istituto Nazionale di Alta Matematica (INdAM) for the awarded grants. Andrea Cangiani was supported by the UK Medical Research Council (MRC), Grant No. MR/T017988/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Ferro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferro, N., Perotto, S. & Cangiani, A. An Anisotropic Recovery-Based Error Estimator for Adaptive Discontinuous Galerkin Methods. J Sci Comput 90, 45 (2022). https://doi.org/10.1007/s10915-021-01724-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01724-4

Keywords

Navigation