Skip to main content
Log in

Stability Analysis of Polytopic Discontinuous Galerkin Approximations of the Stokes Problem with Applications to Fluid–Structure Interaction Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a stability analysis of the Discontinuous Galerkin method on polygonal and polyhedral meshes (PolyDG) for the Stokes problem. In particular, we analyze the discrete inf-sup condition for different choices of the polynomial approximation order of the velocity and pressure approximation spaces. To this aim, we employ a generalized inf-sup condition with a pressure stabilization term. We also prove a priori hp-version error estimates in suitable norms. We numerically check the behaviour of the inf-sup constant and the order of convergence with respect to the mesh configuration, the mesh-size, and the polynomial degree. Finally, as a relevant application of our analysis, we consider the PolyDG approximation for a 2D fluid–structure interaction problem and we numerically explore the stability properties of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ager, C., Schott, B., Vuong, A.T., Popp, A., Wall, W.A.: A consistent approach for fluid–structure-contact interaction based on a porous flow model for rough surface contact. Int. J. Numer. Methods Eng. 119(13), 1345–1378 (2019)

    MathSciNet  Google Scholar 

  2. Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Alauzet, F., Fabrèges, B., Fernández, M.A., Landajuela, M.: Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput. Methods Appl. Mech. Eng. 301, 300–335 (2016). https://doi.org/10.1016/j.cma.2015.12.015

    Article  MathSciNet  MATH  Google Scholar 

  4. Antonietti, P.F., Cangiani, A., Collis, J., Dong, Z., Georgoulis, E.H., Giani, S., Houston, P.: Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, pp. 281–310. Springer, Cham (2016)

    MATH  Google Scholar 

  5. Antonietti, P.F., Facciolá, C., Houston, P., Mazzieri, I., Pennesi, G., Verani, M.: High-order discontinuous Galerkin methods on polyhedral grids for geophysical applications: seismic wave propagation and fractured reservoir simulations. In: Di Pietro, D.A., Formaggia, L., Masson, R. (eds.) Polyhedral Methods in Geosciences. SEMA-SIMAI Springer Series. Springer, Cham (2020)

    MATH  Google Scholar 

  6. Antonietti, P.F., Giani, S., Houston, P.: \(hp\)-version composite Discontinuous Galerkin methods for elliptic problems on complicated domains. SIAM J. Sci. Comput. 35(3), A1417–A1439 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Antonietti, P.F., Mazzieri, I.: High-order discontinuous Galerkin methods for the elastodynamics problem on polygonal and polyhedral meshes. Comput. Methods Appl. Mech. Eng. 342, 414–437 (2018)

    MATH  Google Scholar 

  8. Antonietti, P.F., Verani, M., Vergara, C., Zonca, S.: Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids. Finite Elem. Anal. Des. 159, 1–14 (2019)

    MathSciNet  Google Scholar 

  9. Babuška, I., Suri, M.: The \(h\)-\(p\) version of the finite element method with quasi-uniform meshes. ESAIM Math. Model. Numer. Anal. 21(2), 199–238 (1987)

    MathSciNet  MATH  Google Scholar 

  10. Babuška, I., Suri, M.: The optimal convergence rate of the \(p\)-version of the finite element method. SIAM J. Numer. Anal. 24(4), 750–776 (1987)

    MathSciNet  MATH  Google Scholar 

  11. Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Beirão Da Veiga, L., Canuto, C., Nochetto, R.H., Vacca, G.: Equilibrium analysis of an immersed rigid leaflet by the virtual element method (2020). arXiv preprint arXiv:2007.09130

  13. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Berlin (2013)

    MATH  Google Scholar 

  14. Boffi, D., Gastaldi, L.: A fictitious domain approach with Lagrange multiplier for fluid–structure interactions. Numer. Math. 135(3), 711–732 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Borazjani, I.: Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Methods Appl. Mech. Eng. 257, 103–116 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Borker, R., Huang, D., Grimberg, S., Farhat, C., Avery, P., Rabinovitch, J.: Mesh adaptation framework for embedded boundary methods for computational fluid dynamics and fluid–structure interaction. Int. J. Numer. Methods Fluids 90(8), 389–424 (2019)

    MathSciNet  Google Scholar 

  17. Bouaanani, N., Renaud, S.: Effects of fluid–structure interaction modeling assumptions on seismic floor acceleration demands within gravity dams. Eng. Struct. 67, 1–18 (2014)

    Google Scholar 

  18. Braess, D., Schwab, C.: Approximation on simplices with respect to weighted Sobolev norms. J. Approx. Theory 103(2), 329–337 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Publications mathématiques et informatique de Rennes S4, 1–26 (1974)

    MATH  Google Scholar 

  20. Burman, E., Delay, G., Ern, A.: An unfitted hybrid high-order method for the Stokes interface problem. HAL Id: hal-02519896 (2020)

  21. Burman, E., Fernández, M.A.: An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes. Comput. Methods Appl. Mech. Eng. 279, 497–514 (2014). https://doi.org/10.1016/j.cma.2014.07.007

    Article  MathSciNet  MATH  Google Scholar 

  22. Burman, E., Fernández, M.A., Frei, S.: A Nitsche-based formulation for fluid–structure interactions with contact. ESAIM Math. Model. Numer. Anal. 54(2), 531–564 (2020)

    MathSciNet  MATH  Google Scholar 

  23. Burman, E., Frei, S., Massing, A.: Eulerian time-stepping schemes for the non-stationary Stokes equations on time-dependent domains (2019). arXiv preprint arXiv:1910.03054

  24. Cangiani, A., Dong, Z., Georgoulis, E.H.: \(hp\)-version space-time discontinuous Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Comput. 39(4), A1251–A1279 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Cangiani, A., Dong, Z., Georgoulis, E.H.: \(hp\)-version discontinuous Galerkin methods on essentially arbitrarily-shaped elements (2019)

  26. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. ESAIM Math. Model. Numer. Anal. 50(3), 699–725 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. Springer, Cham (2017)

    MATH  Google Scholar 

  28. Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Cockburn, B., Kanschat, G., Schötzau, D., Schwab, C.: Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40(1), 319–343 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Court, S., Fournié, M.: A fictitious domain finite element method for simulations of fluid–structure interactions: the Navier–Stokes equations coupled with a moving solid. J. Fluid. Struct. 55, 398–408 (2015)

    Google Scholar 

  31. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comput. 79(271), 1303–1330 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. Mathématiques & Applications, vol. 69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-22980-0

    Book  MATH  Google Scholar 

  33. Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Donea, J.: An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interaction. Comput. Methods Appl. Mech. Eng. 33, 689–723 (1982)

    MATH  Google Scholar 

  35. Dumbser, M., Fambri, F., Furci, I., Mazza, M., Serra-Capizzano, S., Tavelli, M.: Staggered discontinuous Galerkin methods for the incompressible Navier–Stokes equations: spectral analysis and computational results. Numer. Linear Algebra Appl. 25(5), e2151 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer-Verlag, New York (2004). https://doi.org/10.1007/978-1-4757-4355-5

    Book  MATH  Google Scholar 

  37. Ern, A., Guermond, J.L.: Finite Elements. II—Galerkin Approximation, Elliptic and Mixed PDEs. Texts in Applied Mathematics, vol. 73. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-56923-5

    Book  MATH  Google Scholar 

  38. Fedele, M., Faggiano, E., Dede, L., Quarteroni, A.: A patient-specific aortic valve model based on moving resistive immersed implicit surfaces. Biomech. Model. Mech. 16(5), 1779–1803 (2017)

    Google Scholar 

  39. Gerstenberger, A., Wall, W.A.: An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput. Methods Appl. Mech. Eng. 197(19), 1699–1714 (2008)

    MathSciNet  MATH  Google Scholar 

  40. Ghosh, R.P., Marom, G., Bianchi, M., D’souza, K., Zietak, W., Bluestein, D.: Numerical evaluation of transcatheter aortic valve performance during heart beating and its post-deployment fluid–structure interaction analysis. Biomech. Model. Mechanobiol. 19, 1725–1740 (2020)

    Google Scholar 

  41. Girault, V., Rivière, B., Wheeler, M.: A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier–Stokes problems. Math. Comput. 74(249), 53–84 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Periaux, J.: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169(2), 363–426 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Griffith, B.E.: Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28(3), 317–345 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

  45. Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191(17–18), 1895–1908 (2002)

    MathSciNet  MATH  Google Scholar 

  46. Hron, J., Turek, S.: A monolithic FEM/multigrid solver for an ALE formulation of fluid–structure interaction with applications in biomechanics. In: Bungartz, H.J., Schafer, M. (eds.) Fluid-Structure Interaction, pp. 146–170. Springer, Berlin (2006)

    MATH  Google Scholar 

  47. Kamakoti, R., Shyy, W.: Fluid-structure interaction for aeroelastic applications. Prog. Aerosp. Sci. 40(8), 535–558 (2004)

    MATH  Google Scholar 

  48. Lehrenfeld, C., Olshanskii, M.: An Eulerian finite element method for PDEs in time-dependent domains. ESAIM: Mathematical Modelling and Numerical Analysis 53(2), 585–614 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Massing, A., Larson, M.G., Logg, A., Rognes, M.E.: A Nitsche-based cut finite element method for a fluid–structure interaction problem. Commun. Appl. Math. Comput. Sci. 10(2), 97–120 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005). https://doi.org/10.1146/annurev.fluid.37.061903.175743

    Article  MathSciNet  MATH  Google Scholar 

  51. Picelli, R., Ranjbarzadeh, S., Sivapuram, R., Gioria, R., Silva, E.: Topology optimization of binary structures under design-dependent fluid–structure interaction loads. Struct. Multidiscip. Optim. 62, 1–16 (2020)

    MathSciNet  Google Scholar 

  52. Schötzau, D., Schwab, C., Stenberg, R.: Mixed \(hp\)-FEM on anisotropic meshes II: hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83(4), 667–697 (1999)

    MathSciNet  MATH  Google Scholar 

  53. Schötzau, D., Schwab, C., Toselli, A.: Mixed \(hp\)-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40(6), 2171–2194 (2002)

    MathSciNet  MATH  Google Scholar 

  54. Schötzau, D., Schwab, C., Toselli, A.: Stabilized \(hp\)-DGFEM for incompressible flow. Math. Models Methods Appl. Sci. 13(10), 1413–1436 (2003)

    MathSciNet  MATH  Google Scholar 

  55. Schwab, C.: \(p\)- and \(hp\)- Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  56. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, NY (1970)

    MATH  Google Scholar 

  57. Stenberg, R., Suri, M.: Mixed \(hp\) finite element methods for problems in elasticity and Stokes flow. Numer. Math. 72(3), 367–389 (1996)

    MathSciNet  MATH  Google Scholar 

  58. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: Polymesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    MathSciNet  MATH  Google Scholar 

  59. Tavelli, M., Dumbser, M.: Arbitrary high order accurate space-time discontinuous Galerkin finite element schemes on staggered unstructured meshes for linear elasticity. J. Comput. Phys. 366, 386–414 (2018)

    MathSciNet  MATH  Google Scholar 

  60. Tello, A., Codina, R., Baiges, J.: Fluid structure interaction by means of variational multiscale reduced order models. Int. J. Numer. Methods Eng. 121(12), 2601–2625 (2020)

    MathSciNet  Google Scholar 

  61. Terahara, T., Takizawa, K., Tezduyar, T.E., Bazilevs, Y., Hsu, M.C.: Heart valve isogeometric sequentially-coupled FSI analysis with the space–time topology change method. Comput. Mech. 65, 1–21 (2020)

    MathSciNet  MATH  Google Scholar 

  62. Tezduyar, T.E., Sathe, S.: Modelling of fluid–structure interactions with the space–time finite elements: solution techniques. Int. J. Numer. Methods Fluids 54(6–8), 855–900 (2007)

    MathSciNet  MATH  Google Scholar 

  63. Toselli, A.: \(hp\) discontinuous Galerkin approximations for the Stokes problem. Math. Models Methods Appl. Sci. 12(11), 1565–1597 (2002)

    MathSciNet  MATH  Google Scholar 

  64. Toselli, A., Schwab, C.: Mixed \(hp\)-finite element approximations on geometric edge and boundary layer meshes in three dimensions. Numer. Math. 94(4), 771–801 (2003)

    MathSciNet  MATH  Google Scholar 

  65. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51(2), 509–535 (2017)

    MathSciNet  MATH  Google Scholar 

  66. Wiresaet, D., Kubatko, E.J., Michoski, C.E., Tanaka, S., Westerink, J.J., Dawson, C.: Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow. Comput. Methods Appl. Mech. Eng. 270, 113–149 (2014)

    MathSciNet  MATH  Google Scholar 

  67. Xu, D., Kaliviotis, E., Munjiza, A., Avital, E., Ji, C., Williams, J.: Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 46(11), 1810–1817 (2013)

    Google Scholar 

  68. Ye, X., Zhang, S.: A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes. Int. J. Numer. Methods Fluids 93(6), 1913–1928 (2021)

    MathSciNet  Google Scholar 

  69. Zhang, L.T., Gay, M.: Immersed finite element method for fluid–structure interactions. J. Fluid Struct. 23(6), 839–857 (2007)

    Google Scholar 

  70. Zonca, S., Antonietti, P.F., Vergara, C.: A polygonal discontinuous Galerkin formulation for contact mechanics in fluid–structure interaction problems. Commun. Comput. Phys. 30(1), 1–33 (2021)

    MathSciNet  MATH  Google Scholar 

  71. Zonca, S., Vergara, C., Formaggia, L.: An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40(1), B59–B84 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Zonca.

Additional information

PFA, LM, MV and SZ are member of the INdAM Research group GNCS and this work is partially funded by INDAM-GNCS. PFA, MV and SZ have been partially funded by the PRIN Italian research grant n. 201744KLJL funded by MIUR. LM acknowledges the support of the Austrian Science Fund (FWF) project P33477.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonietti, P.F., Mascotto, L., Verani, M. et al. Stability Analysis of Polytopic Discontinuous Galerkin Approximations of the Stokes Problem with Applications to Fluid–Structure Interaction Problems. J Sci Comput 90, 23 (2022). https://doi.org/10.1007/s10915-021-01695-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01695-6

Keywords

Mathematics Subject Classification

Navigation