Skip to main content
Log in

Space Reduction for Linear Systems with Local Symmetry

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A space reduction method for structural operator equations is proposed in this paper. It turns out that many interface problems derived by applying the idea of domain decomposition can be categorized into this framework. A seemingly simple algebraic technique is proposed to reduce the complexity of operator equations. The connection between this technique and the integral equation method is revealed. Under mild conditions, we prove that the reduced operator equation by space reduction is well-posed, and its solution is the same as that of the original one. As two applications, we apply the proposed method to solve a planar triangular lattice problem and an exterior problem of modified Helmholtz equation with FEM discretization. The numerical evidence validates the effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adams, J.B.: Bonding energy models. Elsevier (2001)

  2. Banjai, L., Lubich, C., Sayas, F.J.: Stable numerical coupling of exterior and interior problems for the wave equation. Numer. Math. 129(4), 611–646 (2015)

    Article  MathSciNet  Google Scholar 

  3. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer (1994)

  4. Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements (invited contribution). In: Mathematical and Computational Aspects, pp. 411–420. Springer (1987)

  5. Du, Q., Han, H., Zhang, J., Zheng, C.: Numerical solution of a two-dimensional nonlocal wave equation on unbounded domains. SIAM J. Sci. Comput. 40(3), A1430–A1445 (2018)

    Article  MathSciNet  Google Scholar 

  6. Du, Q., Zhang, J., Zheng, C.: Nonlocal wave propagation in unbounded multi-scale media. Commun. Comput. Phys. 24(4) (2018)

  7. E, W., Huang, Z.: A dynamic atomistic–continuum method for the simulation of crystalline materials. J. Comput. Phys. 182(1), 234–261 (2002)

  8. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  Google Scholar 

  9. Givoli, D.: Non-reflecting boundary conditions. J. Comput. Phys. 94(1), 1–29 (1991)

    Article  MathSciNet  Google Scholar 

  10. Han, H.: A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8(3), 223–232 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Han, H., Wu, X.: Approximation of infinite boundary condition and its application to finite element methods. J. Comput. Math. pp. 179–192 (1985)

  12. Han, H., Wu, X.: The approximation of the exact boundary conditions at an artificial boundary for linear elastic equations and its applications. Math. Comput. 59(199), 21–37 (1992)

    MathSciNet  MATH  Google Scholar 

  13. Han, H., Wu, X.: Artificial Boundary Method. Tsinghua University Press, Springer (2013)

  14. Huang, H., Liu, D., Yu, D.: Solution of exterior problem using ellipsoidal artificial boundary. J. Comput. Appl. Math. 231(1), 434–446 (2009)

    Article  MathSciNet  Google Scholar 

  15. Huang, H., Yu, D.: The ellipsoid artificial boundary method for three-dimensional unbounded domains. J. Comput. Math. 27(2–3), 196–214 (2009)

  16. Ji, S., Yang, Y., Pang, G., Antoine, X.: Accurate artificial boundary conditions for the semi-discretized linear schrödinger and heat equations on rectangular domains. Comput. Phys. Commun. 222, 84–93 (2018)

    Article  MathSciNet  Google Scholar 

  17. Keller, J.B., Givoli, D.: Exact non-reflecting boundary conditions. J. Comput. Phys. 82(1), 172–192 (1989)

    Article  MathSciNet  Google Scholar 

  18. Lax, P.D.: Functional Analysis. Wiley, New York (2002)

    MATH  Google Scholar 

  19. Li, B., Zhang, J., Zheng, C.: Stability and error analysis for a second-order fast approximation of the one-dimensional Schrödinger equation under absorbing boundary conditions. SIAM J. Sci. Comput. 40(6), A4083–A4104 (2018)

    Article  Google Scholar 

  20. Li, X.: An atomistic-based boundary element method for the reduction of molecular statics models. Comput. Meth. Appl. Mech. Eng. 225, 1–13 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Li, X., E, W.: Variational boundary conditions for molecular dynamics simulations of crystalline solids at finite temperature: treatment of the thermal bath. Phys. Rev. B 76(10), 104107 (2007)

  22. Lubich, C.: Convolution quadrature revisited. BIT Numer. Math. 44(3), 503–514 (2004)

    Article  MathSciNet  Google Scholar 

  23. Lubich, C., Schädle, A.: Fast convolution for nonreflecting boundary conditions. SIAM J. Sci. Comput. 24(1), 161–182 (2002)

    Article  MathSciNet  Google Scholar 

  24. Ma, X., Zheng, C.: Fast finite element method for the three-dimensional Poisson equation in infinite domains. Commun. Comput. Phys. 24, 1101–1120 (2018)

    Article  MathSciNet  Google Scholar 

  25. Minden, V., Ying, L.: A simple solver for the fractional Laplacian in multiple dimensions. SIAM J. Sci. Comput. 42, A878–A900 (2020)

    Article  MathSciNet  Google Scholar 

  26. Pang, G., Yang, Y., Tang, S.: Exact boundary condition for semi-discretized Schrödinger equation and heat equation in a rectangular domain. J. Sci. Comput. 72(1), 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  27. Park, H.S., Karpov, E.G., Liu, W.K., Klein, P.A.: The bridging scale for two-dimensional atomistic/continuum coupling. Philos. Mag. 85(1), 79–113 (2005)

    Article  Google Scholar 

  28. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer, Berlin (2011)

    Book  Google Scholar 

  29. Sun, T., Wang, J., Zheng, C.: Fast evaluation of artificial boundary conditions for convection-diffusion equation. SIAM J. Numer. Anal. 58(6), 3530–3579 (2020)

    Article  MathSciNet  Google Scholar 

  30. Wagner, G.J., Karpov, E.G., Liu, W.K.: Molecular dynamics boundary conditions for regular crystal lattices. Comput. Meth. Appl. Mech. Eng. 193(17–20), 1579–1601 (2004)

    Article  MathSciNet  Google Scholar 

  31. Zhang, W., Yang, J., Zhang, J., Du, Q.: Artificial boundary conditions for nonlocal heat equations on unbounded domain. Commun. Comput. Phys. 21(1), 16–39 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zheng, C., Du, Q., Ma, X., Zhang, J.: Stability and error analysis for a second-order fast approximation of the local and nonlocal diffusion equations on the real line. Appl. Numer. Math. 58(3), 1893–1917 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Zheng, C., Hu, J., Du, Q., Zhang, J.: Numerical solution of the nonlocal diffusion equation on the real line. SIAM J. Sci. Comput. 39(5), A1951–A1968 (2017)

  34. Zheng, C., Ma, X.: Fast algorithm for the three-dimensional Poisson equation in infinite domains. IMA J. Numer. Anal. (2020). https://doi.org/10.1093/imanum/draa051

Download references

Acknowledgements

We would like to thank the referees for suggestions which significantly improved the exposition. This work was supported by the Natural Science Foundation of Xinjiang Autonomous Region with No. 2019D01C026, and the National Natural Science Foundation of China (NSFC) under Grant No. 11771248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Zheng, C. Space Reduction for Linear Systems with Local Symmetry. J Sci Comput 89, 59 (2021). https://doi.org/10.1007/s10915-021-01663-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01663-0

Keywords

Navigation