Skip to main content
Log in

Second-Order and Nonuniform Time-Stepping Schemes for Time Fractional Evolution Equations with Time–Space Dependent Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The numerical analysis of time fractional evolution equations with the second-order elliptic operator including general time–space dependent variable coefficients is challenging, especially when the classical weak initial singularities are taken into account. In this paper, we introduce a concise technique to construct efficient time-stepping schemes with variable time step sizes for two-dimensional time fractional sub-diffusion and diffusion-wave equations with general time–space dependent variable coefficients. By means of the novel technique, the nonuniform Alikhanov type schemes are constructed and analyzed for the sub-diffusion and diffusion-wave problems. For the diffusion-wave problem, our scheme is constructed by employing the recently established symmetric fractional-order reduction method. The unconditional stability of proposed schemes is rigorously discussed under mild assumptions on variable coefficients and, based on reasonable regularity assumptions and weak time mesh restrictions, the second-order convergence is obtained with respect to discrete \(H^1\)-norm. Numerical experiments are given to demonstrate the theoretical statements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  2. Alinhac, S.: Hyperbolic Partial Differential Equations. Springer, Dordrecht (2009)

    Book  Google Scholar 

  3. Chen, H., Stynes, M.: Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem. J. Sci. Comput. 79, 624–647 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2013)

    Article  MathSciNet  Google Scholar 

  5. Fa, K.S., Lenzi, E.K.: Time-fractional diffusion equation with time dependent diffusion coefficient. Phys. Rev. E 72, 011107 (2005)

    Article  Google Scholar 

  6. Ji, B., Liao, H.L., Gong, Y., Zhang, L.: Adaptive second-order Crank–Nicolson time-stepping schemes for time-fractional molecular beam epitaxial growth models. SIAM J. Sci. Comput. 42, B738–B760 (2020)

    Article  MathSciNet  Google Scholar 

  7. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)

    Article  MathSciNet  Google Scholar 

  8. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: analysis and numerical solution. Math. Comput. 88, 2157–2186 (2019)

    Article  MathSciNet  Google Scholar 

  9. Jin, B., Li, B., Zhou, Z.: Subdiffusion with time-dependent coefficients: improved regularity and second-order time stepping. Numer. Math. 145, 883–913 (2020)

    Article  MathSciNet  Google Scholar 

  10. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88, 2135–2155 (2019)

    Article  MathSciNet  Google Scholar 

  11. Lee, H., Lee, J., Sheen, D.: Laplace transform method for parabolic problems with time-dependent coefficients. SIAM J. Numer. Anal. 51, 112–125 (2013)

    Article  MathSciNet  Google Scholar 

  12. Li, B., Wang, T., Xie, X.: Numerical analysis of two Galerkin discretizations with graded temporal grids for fractional evolution equations. J. Sci. Comput. 85, Article number: 59 (2020)

  13. Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of a nonuniform L1 formula for time-fractional reaction–subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  Google Scholar 

  14. Liao, H.L., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57, 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  15. Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-subdiffusion problem. Commun. Comput. Phys. 30, 567–601 (2021)

    Article  MathSciNet  Google Scholar 

  16. Liao, H.L., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen–Cahn equations. J. Comput. Phys. 141, 109473 (2020)

    Article  MathSciNet  Google Scholar 

  17. Liao, H.L., Yan, Y., Zhang, J.: Unconditional convergence of a two-level linearized fast algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    Article  MathSciNet  Google Scholar 

  18. Luskin, M., Rannacher, R.: On the smoothing property of the Galerkin method for parabolic equations. SIAM J. Numer. Anal. 19, 93–113 (1982)

    Article  MathSciNet  Google Scholar 

  19. Lyu, P., Liang, Y., Wang, Z.: A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation. Appl. Numer. Math. 151, 448–471 (2020)

    Article  MathSciNet  Google Scholar 

  20. Lyu, P., Vong, S.: A symmetric fractional-order reduction method for direct nonuniform approximations of semilinear diffusion-wave equations, submitted. arXiv:2101.09678 [math.NA]

  21. Mainardi, F., Paradisi, P.: Fractional diffusive waves. J. Comput. Acoust. 9, 1417–1436 (2001)

    Article  MathSciNet  Google Scholar 

  22. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

  23. Mustapha, K.: FEM for time-fractional diffusion equations, novel optimal error analyses. Math. Comput. 87, 2259–2272 (2018)

    Article  MathSciNet  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

  26. Sun, Z.Z.: An unconditionally stable and \({{\cal{O}}}(\tau ^2 + h^4)\) order \(L_\infty \) convergent difference scheme for linear parabolic equations with variable coefficients. Numer. Methods Partial Differ. Equ. 17, 619–631 (2001)

    Article  Google Scholar 

  27. Vong, S., Lyu, P., Wang, Z.: A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under Neumann boundary conditions. J. Sci. Comput. 66, 725–739 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, Y.M.: A compact finite difference method for a class of time fractional convection–diffusion-wave equations with variable coefficients. Numer. Algorithms 70, 625–651 (2015)

    Article  MathSciNet  Google Scholar 

  29. Wei, Y., Lü, S., Chen, H., Zhao, Y., Wang, F.: Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes. Appl. Math. Lett. 111, 106604 (2021)

    Article  MathSciNet  Google Scholar 

  30. Wei, Y., Zhao, Y., Wang, F., Tang, Y., Yang, J.: Superconvergence analysis of anisotropic FEMs for time fractional variable coefficient diffusion equations. Bull. Malays. Math. Sci. Soc. 43, 4411–4429 (2020)

    Article  MathSciNet  Google Scholar 

  31. Yang, X., Zhang, H., Xu, D.: Orthogonal spline collocation scheme for multiterm fractional convection–diffusion equation with variable coefficients. Numer. Methods Partial Differ. Equ. 34, 555–574 (2018)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Q., Liu, L., Zhang, C.: Compact scheme for fractional diffusion-wave equation with spatial variable coefficient and delays. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1789600

    Article  Google Scholar 

  33. Zhao, X., Xu, Q.: Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient. Appl. Math. Model. 38, 3848–3859 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestions which lead to a significant improvement of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seakweng Vong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. Lyu is supported by the Fundamental Research Funds for the Central Universities (JBK2102010), and the National Natural Science Foundation of China (12101510 and 12071373). S. Vong is funded by The Science and Technology Development Fund, Macau SAR (File No. 0005/2019/A) and University of Macau (File No. MYRG2018-00047-FST).

Appendix

Appendix

1.1 The Coefficients of Alikhanov Formulas

The coefficients \(A_{n-k}^{(n)}\) of the Alikhanov formula on general meshes are defined as ([15])

$$\begin{aligned} A_{n-k}^{(n)}:=\left\{ \begin{array}{ll} a_0^{(n)}+\rho _{n-1}b_1^{(n)},\quad &{} k=n,\\ a_{n-k}^{(n)}+\rho _{k-1}b_{n-k+1}^{(n)}-b_{n-k}^{(n)}, &{} 2\le k\le n-1,\\ a_{n-1}^{(n)}-b_{n-1}^{(n)}, &{} k=1, \end{array}\right. \quad \text{ for }~n\ge 2, \end{aligned}$$

where

$$\begin{aligned}&a_{n-k}^{(n)}:=\frac{1}{\tau _k}\int _{t_{k-1}}^{\min \{t_k,t_{n-\theta }\}}\omega _{1-\beta }(t_{n-\theta }-s)\,\mathrm {d}s ,~1\le k\le n,\\&b_{n-k}^{(n)}:=\frac{2}{\tau _k(\tau _k+\tau _{k+1})}\int _{t_{k-1}}^{t_k}\omega _{1-\beta }(t_{n-\theta }-s)(s-t_{k-\frac{1}{2}})\,\mathrm {d}s ,~1\le k\le n-1, \end{aligned}$$

with \(\rho _k:=\tau _k/\tau _{k+1}\) being the local time step-size ratios. It has been proved in [14, 15] that the discrete coefficients of the nonuniform Alikhanov formula (with \(\pi _A=11/4\) and \(\rho =7/4\), where \(\rho :=\max _{k}\{\rho _k\}\) is the maximum step-size ratio) satisfy two basic properties:

A1.:

The discrete kernels are positive and monotone: \(A_0^{(n)}\ge A_1^{(n)}\ge \cdots \ge A_{n-1}^{(n)}>0\);

A2.:

The discrete kernels fulfill \(A_{n-k}^{(n)}\ge \frac{1}{\pi _A}\int _{t_{k-1}}^{t_k}\frac{\omega _{1-\beta }(t_n-s)}{\tau _k}\,\mathrm {d}s\) for \(1\le k\le n\le N\).

1.2 The Proof of (2.1)

We will go through the proof of [14, Lemma A.1] to show that

$$\begin{aligned}&2(\mathbf{z}^{n})^T\mathbf{Q}^{(n)}({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta }\ge \sum _{k=1}^nA_{n-k}^{(n)}\nabla _\tau [(\mathbf{z}^k)^T\mathbf{Q}^{(n)}{} \mathbf{z}^k]+\frac{(({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta })^T\mathbf{Q}^{(n)}({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta }}{A_0^{(n)}}, \end{aligned}$$
(7.1)
$$\begin{aligned}&2(\mathbf{z}^{n-1})^T\mathbf{Q}^{(n)}({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta }\ge \sum _{k=1}^nA_{n-k}^{(n)}\nabla _\tau [(\mathbf{z}^k)^T\mathbf{Q}^{(n)}\mathbf{z}^k]-\frac{(({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta })^T\mathbf{Q}^{(n)}({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta }}{A_0^{(n)}-A_1^{(n)}}, \end{aligned}$$
(7.2)

for \(1\le n\le N\) and \(A_1^{(1)}:=0\).

For fix n, denote

$$\begin{aligned} J_n:=2(\mathbf{z}^{n})^T\mathbf{Q}^{(n)}({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta }-\sum _{k=1}^nA_{n-k}^{(n)}\nabla _\tau [(\mathbf{z}^k)^T\mathbf{Q}^{(n)}{} \mathbf{z}^k]. \end{aligned}$$

Then

$$\begin{aligned} J_n&= \sum _{k=1}^nA_{n-k}^{(n)}\left[ 2(\mathbf{z}^{n})^T\mathbf{Q}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1})-(\mathbf{z}^{k}+\mathbf{z}^{k-1})^T\mathbf{Q}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1}) \right] \\&=\sum _{k=1}^nA_{n-k}^{(n)}\left[ \left( 2\mathbf{z}^{n}-(\mathbf{z}^{k}+\mathbf{z}^{k-1})\right) ^T\mathbf{Q}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1}) \right] \\&=\sum _{k=1}^nA_{n-k}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1})^T\mathbf{Q}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1})\\&\quad +2\sum _{k=1}^nA_{n-k}^{(n)}\sum _{j=k+1}^n(\mathbf{z}^{j}-\mathbf{z}^{j-1})^T\mathbf{Q}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1}) \\&=\sum _{k=1}^nA_{n-k}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1})^T\mathbf{Q}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1})\\&\quad +2\sum _{j=2}^n\sum _{k=1}^{j-1}A_{n-k}^{(n)}(\mathbf{z}^{j}-\mathbf{z}^{j-1})^T\mathbf{Q}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1}). \end{aligned}$$

where the identity \(2\mathbf{z}^{n}-(\mathbf{z}^{k}+\mathbf{z}^{k-1})=\mathbf{z}^{k}-\mathbf{z}^{k-1}+2\sum _{j=k+1}^n(\mathbf{z}^{j}-\mathbf{z}^{j-1})\) has been employed in the third equality.

Next, introduce the quantities

$$\begin{aligned} \mathbf{w}^j:=\sum _{k=1}^{j}A_{n-k}^{(n)}(\mathbf{z}^{k}-\mathbf{z}^{k-1}) \quad \text{ and }\quad B_j:=\frac{1}{A_{n-j}^{(n)}}\quad \text{ for }~1\le j\le n. \end{aligned}$$

It holds that \(\mathbf{z}^{j}-\mathbf{z}^{j-1}=B_j(\mathbf{w}^j-\mathbf{w}^{j-1})\) for \(2\le j\le n\), and \(B_1\ge B_2\ge \cdots \ge B_n\) (according to the monotone property in A1). Then

$$\begin{aligned} J_n&=B_1(\mathbf{w}^1)^T\mathbf{Q}^{(n)}{} \mathbf{w}^1+\sum _{j=2}^nB_j(\mathbf{w}^j-\mathbf{w}^{j-1})^T\mathbf{Q}^{(n)}(\mathbf{w}^j-\mathbf{w}^{j-1})\\&\quad +2\sum _{j=2}^nB_j(\mathbf{w}^j-\mathbf{w}^{j-1})^T\mathbf{Q}^{(n)}{} \mathbf{w}^{j-1}\\&=B_1(\mathbf{w}^1)^T\mathbf{Q}^{(n)}{} \mathbf{w}^1+\sum _{j=2}^nB_j\left[ (\mathbf{w}^j)^T\mathbf{Q}^{(n)}{} \mathbf{w}^j-(\mathbf{w}^{j-1})^T\mathbf{Q}^{(n)}{} \mathbf{w}^{j-1} \right] \\&=B_n(\mathbf{w}^n)^T\mathbf{Q}^{(n)}{} \mathbf{w}^n+\sum _{j=1}^{n-1}(B_j-B_{j+1})(\mathbf{w}^j)^T\mathbf{Q}^{(n)}{} \mathbf{w}^j\\&\ge B_n(\mathbf{w}^n)^T\mathbf{Q}^{(n)}{} \mathbf{w}^n, \end{aligned}$$

because \(\mathbf{Q}^{(n)}\) is a positive definite matrix. Hence, the inequality (7.1) is valid since \(\mathbf{w}^n=({{\mathcal {D}}}_\tau ^\beta \mathbf{z})^{n-\theta }\) and \(B_n=1/A_0^{(n)}\). Similarly, it is easy to trace the remaining parts of [14, Lemma A.1] to check inequality (7.2).

According to [14, Lemma 4.1] and [15, Corollary 2.3], with the maximum time-step ratio \(\rho =7/4\), we have

$$\begin{aligned} \frac{1-\theta }{A_0^{(n)}}-\frac{\theta }{A_0^{(n)}-A_1^{(n)}}\ge 0, \end{aligned}$$

which further leads to (2.1) by a simple combination of (7.1) and (7.2).

1.3 Truncation Error Analysis

The truncation errors in (3.19) and (4.16) are given by

$$\begin{aligned}&{{\mathcal {T}}}_u(\mathbf{x}_h,t_{n-\theta }):={{\mathcal {D}}}_t^\alpha u(\mathbf{x}_h,t_{n-\theta })-\left( {{\mathcal {D}}}_\tau ^\alpha u(\mathbf{x}_h,\cdot )\right) ^{n-\theta },\\&{{\mathcal {T}}}_A(\mathbf{x}_h,t_{n-\theta }):={{\mathcal {A}}}_h^{n-\theta }\left\{ u(\mathbf{x}_h,t_{n-\theta })-\left[ (1-\theta )u(\mathbf{x}_h,t_n)+\theta u(\mathbf{x}_h,t_{n-1}) \right] \right\} ,\\&{{\mathcal {T}}}_{{\tilde{u}}}(\mathbf{x}_h,t_{n-\theta }):={{\mathcal {D}}}_t^\beta {{\tilde{u}}}(\mathbf{x}_h,t_{n-\theta })-\left( {{\mathcal {D}}}_\tau ^\beta {{\tilde{u}}}(\mathbf{x}_h,\cdot )\right) ^{n-\theta },\\&{{\mathcal {T}}}_v(\mathbf{x}_h,t_{n-\theta }):={{\mathcal {D}}}_t^\beta v(\mathbf{x}_h,t_{n-\theta })-\left( {{\mathcal {D}}}_\tau ^\beta v(\mathbf{x}_h,\cdot )\right) ^{n-\theta },\\&{{\mathcal {S}}}(\mathbf{x}_h,t_{n-\theta }):=({{\mathcal {A}}}u)(\mathbf{x}_h,t_{n-\theta })-{{\mathcal {A}}}_h^{n-\theta }u(\mathbf{x}_h,t_{n-\theta }), \end{aligned}$$

for \(\mathbf{x}_h\in \Omega _h\) and \(1\le n\le N\).

We first study the spatial error \({{\mathcal {S}}}(\mathbf{x}_h,t_{n-\theta })\). By the Taylor expansion (see also [26, eq. (31)]), we can take a continuous function \({\xi }^n(\mathbf{x})\) such that

$$\begin{aligned} {\xi }^n(\mathbf{x}_h)&=\left[ \partial _x(p_1\partial _x u)+\partial _y(p_1\partial _y u)\right] (\mathbf{x}_h,t_{n-\theta })\\&\quad -\left\{ \delta _x[(p_1)_h^{n-\theta }\delta _x]+\delta _y[(p_1)_h^{n-\theta }\delta _y]\right\} u(\mathbf{x}_h,t_{n-\theta }), \end{aligned}$$

where \(\mathbf{x}_h\in \Omega _h\) and \(1\le n\le N\), and \(|{\xi }^n(\mathbf{x}_h)|\le C(h_x^2+h_y^2)\) provided that \(\Vert u\Vert _{H^4}\le C\) and \(p_k(\mathbf{x},\cdot )\in {{\mathcal {C}}}^3(\Omega )\) for \(k=1,2\).

Similarly, there is a continuous function \(\eta ^n(\mathbf{x})\) such that

$$\begin{aligned} {\eta }^n(\mathbf{x}_h)=\left( p_3\partial _x u+p_4\partial _y u)\right] (\mathbf{x}_h,t_{n-\theta })-\left[ (p_1)_h^{n-\theta }\delta _{{\hat{x}}}+(p_4)_h^{n-\theta }\delta _y\right] u(\mathbf{x}_h,t_{n-\theta }), \end{aligned}$$

where \(\mathbf{x}_h\in \Omega _h\) and \(1\le n\le N\), and \(|{\eta }^n(\mathbf{x}_h)|\le C(h_x^2+h_y^2)\) provided \(\Vert u\Vert _{H^3}\le C\) and \(|p_k(\mathbf{x},\cdot )|\le C\) for \(k=3,4\).

Hence, based on V2 and the regularity assumption (1.7), we have

$$\begin{aligned} \left| {{\mathcal {S}}}(\mathbf{x}_h,t_{n-\theta })\right| ={{\mathcal {O}}}(h_x^2+h_y^2). \end{aligned}$$
(7.3)

By the Taylor expansion with integral remainder, we further get that

$$\begin{aligned} \delta _x\xi ^n(x_{i+\frac{1}{2}},y_j)=\frac{1}{2}\int _0^1\left[ \xi _x^n\left( x_{i+\frac{1}{2}}+\frac{h_x}{2}s,y_j\right) +\xi _x^n\left( x_{i+\frac{1}{2}}-\frac{h_x}{2}s,y_j\right) \right] (1-s)\,\mathrm {d}s, \end{aligned}$$

for \(0\le i\le M_x,~1\le j\le M_y-1\), and

$$\begin{aligned} \delta _y\xi ^n(x_i,y_{j+\frac{1}{2}})=\frac{1}{2}\int _0^1\left[ \xi _y^n\left( x_i,y_{j+\frac{1}{2}}+\frac{h_y}{2}s\right) +\xi _y^n\left( x_i,y_{j+\frac{1}{2}}-\frac{h_y}{2}s\right) \right] (1-s)\,\mathrm {d}s, \end{aligned}$$

for \(1\le i\le M_x-1,~0\le j\le M_y\). Similar formulations work for \(\delta _x\eta ^n(x_{i+\frac{1}{2}},y_j)\) and \(\delta _y\eta ^n(x_i,y_{j+\frac{1}{2}})\). Thus, under the assumptions in V2 and (1.7), it is easy to know that

$$\begin{aligned} \Vert \nabla _h {{\mathcal {S}}}(\mathbf{x}_h,t_{n-\theta })\Vert \le C(h_x^2+h_y^2),\quad \mathbf{x}_h\in \Omega _h,~1\le n\le N. \end{aligned}$$
(7.4)

For the temporal truncation errors, according to [20, Lemma 6.1], we have

$$\begin{aligned} \sum _{j=1}^nP_{n-j}^{(n)}\Vert ({{\mathcal {T}}}_A)^{n-\theta }\Vert \le C\tau ^{\min \{2,\gamma \sigma \}}. \end{aligned}$$
(7.5)

Referring to [20, eqs. (7.5), (7.6) and (7.8)], similar to the estimation of \(\Vert \nabla _h {{\mathcal {S}}}(\mathbf{x}_h,t_{n-\theta })\Vert \), we have

$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)}\Vert \nabla _h({{\mathcal {T}}}_A)^{n-\theta }\Vert \le C\tau ^{\min \{2,\gamma \sigma \}}, \end{aligned}$$
(7.6)
$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)}\Vert \nabla _h({{\mathcal {T}}}_u)^{n-\theta }\Vert \le C\tau ^{\min \{3-\beta ,\gamma \sigma _1\}}, \end{aligned}$$
(7.7)
$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)}\Vert \nabla _h({{\mathcal {T}}}_{{\tilde{u}}})^{n-\theta }\Vert \le C\tau ^{\min \{3-\beta ,\gamma \sigma _2\}}, \end{aligned}$$
(7.8)
$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)}\Vert ({{\mathcal {T}}}_{v1})^{n-\theta }\Vert \le C\tau ^{\min \{3-\beta ,\gamma \sigma _3\}}, \end{aligned}$$
(7.9)
$$\begin{aligned}&\sum _{j=1}^nP_{n-j}^{(n)}\Vert \nabla _h({{\mathcal {T}}}_{v2})^{n-\theta }\Vert \le C\tau ^{\min \{2,\gamma \sigma _3\}}, \end{aligned}$$
(7.10)

for \(1\le n\le N\), provided that assumptions in V2 and (1.8)–(1.9) are valid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, P., Vong, S. Second-Order and Nonuniform Time-Stepping Schemes for Time Fractional Evolution Equations with Time–Space Dependent Coefficients. J Sci Comput 89, 49 (2021). https://doi.org/10.1007/s10915-021-01661-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01661-2

Keywords

Mathematics Subject Classification

Navigation