Skip to main content
Log in

Accurate Boundary Treatment for Riesz Space Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider numerical boundary treatment for solving the Cauchy problems of the Riesz space fractional diffusion equation with compact initial data in one and two space dimension(s). First, the Riesz space fractional equation is semi-discretized into a lattice system. Then we derive an equivalent decoupled form for its dynamics using kernel functions. Series expansions and path integration are devised to numerically evaluate the kernel functions with high accuracy. For the first time, this allows an accurate numerical boundary treatment for the Riesz space fractional diffusion equation. Numerical results demonstrate the effectiveness of the method. The methodology may be extended to treat other fractional partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Guo, B., Pu, X., Huang, F.: Fractional Partial Differential Equations and Their Numerical Solutions. World Scientific, Singapore (2015)

    Book  Google Scholar 

  2. Karniadakis, G., Hesthaven, J., Podlubny, I.: Special issue on fractional PDEs: theory, numerics, and applications. J. Comput. Phys. 293, 1–3 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ross, B.: A brief history and exposition of the fundamental theory of fractional calculus. Lect. Notes Math. 457, 1–36 (1975)

    Article  Google Scholar 

  4. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  5. Zhang, J., Li, D., Antoine, X.: Efficient numerical computation of time-fractional nonlinear Schrödinger equations in unbounded domain. Commun. Comput. Phys. 25, 218–243 (2019)

    MathSciNet  Google Scholar 

  6. Teodoro, G., Machado, J., Oliveira, E.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019)

    Article  MathSciNet  Google Scholar 

  7. Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  8. Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    Article  MathSciNet  Google Scholar 

  9. Song, F., Xu, C., Karniadakis, G.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, 1320–1344 (2017)

    Article  MathSciNet  Google Scholar 

  10. Hu, Y., Li, C., Li, H.: The finite difference method for Caputo-type parabolic equation with fractional Laplacian: one-dimension case. Chaos Soliton Fract. 102, 319–326 (2017)

    Article  MathSciNet  Google Scholar 

  11. Long, J., Xiao, R., Chen, W.: Fractional viscoelastic models with non-singular kernels. Mech. Mater. 127, 55–64 (2018)

    Article  Google Scholar 

  12. Lian, Y., Ying, Y., Tang, S., Lin, S., Wagner, G., Liu, W.: A Petrov-Galerkin finite element method for the fractional advection–diffusion equation. Comput. Methods Appl. Mech. Eng. 309, 388–410 (2016)

    Article  MathSciNet  Google Scholar 

  13. Tang, S., Ying, Y., Lian, Y., Lin, S., Yang, Y., Wagner, G., Liu, W.: Differential operator multiplication method for fractional differential equations. Comput. Mech. 58, 879–888 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ying, Y., Lian, Y., Tang, S., Liu, W.: Enriched reproducing kernel particle method for fractional advection–diffusion equation. Acta. Mech. Sin. 34, 515–527 (2018)

    Article  MathSciNet  Google Scholar 

  15. Ying, Y., Lian, Y., Tang, S., Liu, W.: High-order central difference scheme for Caputo fractional derivative. Comput. Methods Appl. Mech. Eng. 317, 42–54 (2017)

    Article  MathSciNet  Google Scholar 

  16. Duo, S., Wyk, H., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    Article  MathSciNet  Google Scholar 

  17. Duo, S., Zhang, Y.: Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng. 355, 639–662 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lin, Z., Wang, D., Qi, D., Deng, L.: A Petrov-Galerkin finite element-meshfree formulation for multi-dimensional fractional diffusion equations. Comput. Mech. 66, 323–350 (2020)

    Article  MathSciNet  Google Scholar 

  19. Ji, S., Yang, Y., Pang, G., Antoine, X.: Accurate artificial boundary conditions for the semi-discretized linear Schrödinger and heat equations on rectangular domains. Comput. Phys. Commun. 22, 84–93 (2018)

    Article  Google Scholar 

  20. Pang, G., Tang, S.: Time history kernel functions for square lattice. Comput. Mech. 48, 699–711 (2011)

    Article  MathSciNet  Google Scholar 

  21. Arnold, A., Ehrhardt, M., Sofronov, I.: Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Math. Comput. Model. 43, 294–309 (2002)

    MATH  Google Scholar 

  22. Du, Q., Han, H., Zhang, J., Zheng, C.: Numerical solution of a two-dimensional nonlocal wave equation on unbounded domains. SIAM J. Sci. Comput. 40, 1430–1445 (2018)

    Article  MathSciNet  Google Scholar 

  23. Li, X., Lu, J.: Traction boundary conditions for molecular static simulations. Comput. Methods Appl. Mech. Eng. 308, 310–329 (2016)

    Article  MathSciNet  Google Scholar 

  24. Wang, X., Tang, S.: Matching boundary conditions for diatomic chains. Comput. Mech. 46, 813–826 (2010)

    Article  Google Scholar 

  25. Zhang, J., Xu, Z., Wu, X.: Unified approach to split absorbing boundary conditions for nonlinear Schrodinger equations. Phys. Rev. E 78, 026709 (2008)

    Article  Google Scholar 

  26. Wang, X., Tang, S.: Matching boundary conditions for lattice dynamics. Int. J. Numer. Methods Eng. 93(12), 1255–1285 (2013)

    Article  MathSciNet  Google Scholar 

  27. Jones, R., Kimmer, C.: Efficient non-reflecting boundary condition constructed via optimization of damped layers. Phys. Rev. B 81, 760–762 (2010)

    Article  Google Scholar 

  28. Berenger, J.: A perfect matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  29. Givoli, D.: High-order local non-reflecting boundary conditions: a review. Wave Motion 39, 319–326 (2004)

    Article  MathSciNet  Google Scholar 

  30. Hagstrom, T., Mar-Or, A., Givoli, D.: High-order local absorbing conditions for the wave equation: extensions and improvements. J. Comput. Phys. 227, 3322–3357 (2008)

    Article  MathSciNet  Google Scholar 

  31. Higdon, R.: Radiation boundary conditions for dispersive waves. SIAM J. Numer. Anal. 31, 64–100 (1994)

    Article  MathSciNet  Google Scholar 

  32. Antoine, X., Lorin, E.: Towards perfectly matched layers for time-dependent space fractional PDEs. J. Comput. Phys. 391, 59–90 (2019)

    Article  MathSciNet  Google Scholar 

  33. Kissasa, G., Yang, Y., Hwuang, E., Witscheyc, W., Detred, J., Perdikaris, P.: Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. Comput. Methods Appl. Mech. Eng. 358, 112623 (2020)

    Article  MathSciNet  Google Scholar 

  34. Zhang, Q., Qiao, D., Tang, S.: Designing artificial boundary conditions for atomic chains by machine learning. Mech. Eng. 42, 13–16 (2020). (in Chinese)

    Article  Google Scholar 

  35. Erdélyi, A.: Higher Transcendental Functions, Volume 1, Chapter 1, Nature. Mcgraw-hill book company, inc. New York (1955)

Download references

Acknowledgements

This research is partially supported by NSFC under Grant Nos. 11832001, 11502028, 11890681 and 11988102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Pang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Series Expansions for \(g_n(t,\alpha )\) and \({\dot{g}}_0(t,\alpha )\)

Now we give the proof of Lemma 1.

Proof

First, we recall that [35]

$$\begin{aligned} \int _{0}^{\pi /2}(\cos \eta )^{\alpha }\cos (\beta \eta )d\eta = \displaystyle \frac{\pi }{2^{\alpha +1}}\frac{\Gamma (1+\alpha )}{\Gamma \left( 1+\displaystyle \frac{\alpha +\beta }{2}\right) \Gamma \left( 1+\displaystyle \frac{\alpha -\beta }{2}\right) }. \end{aligned}$$
(50)

We expand \(g_{n}(t,\alpha )\) with respect to t.

$$\begin{aligned} \begin{array}{ll} g_{n}(t,\alpha )&{}=\displaystyle \frac{1}{2\pi }\int _{0}^{2\pi }e^{-\displaystyle \Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}e^{-in\xi }d\xi \\ &{}=\displaystyle \frac{1}{\pi }\int _{0}^{\pi }e^{-\displaystyle \Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}\cos (n\xi )d\xi \\ &{}=\displaystyle \frac{1}{\pi }\sum _{k=0}^{+\infty }\frac{(-2^{\alpha }t)^k}{k!}\int _{0}^{\pi }\Big (\sin (\xi /2)\Big )^{k\alpha }\cos (n\xi )d\xi \quad \quad \quad \pi -\xi \rightarrow \xi _1\\ &{}=\displaystyle \frac{(-1)^{n+1}}{\pi }\sum _{k=0}^{+\infty }\frac{(-2^{\alpha }t)^k}{k!}\int _{\pi }^{0}\Big (\cos (\xi _1/2)\Big )^{k\alpha }\cos (n\xi _1)d\xi _1 \quad \quad \quad \frac{\xi _1}{2} \rightarrow \eta \\ &{}=\displaystyle \frac{2(-1)^{n}}{\pi }\sum _{k=0}^{+\infty }\frac{(-2^{\alpha }t)^k}{k!}\int _{0}^{\pi /2}\Big (\cos \eta \Big )^{k\alpha }\cos (2n\eta )d\eta \\ &{}=\displaystyle \frac{2(-1)^{n}}{\pi }\sum _{k=0}^{+\infty }\frac{(-2^{\alpha }t)^k}{k!}\frac{\pi }{2^{k\alpha +1}} \displaystyle \frac{\Gamma (1+k\alpha )}{\Gamma (1+(k\alpha +2n)/2)\Gamma (1+(k\alpha -2n)/2)}\\ &{}=(-1)^{n}\displaystyle \sum _{k=0}^{+\infty }\frac{(-t)^k}{k!}\displaystyle \frac{\Gamma (1+k\alpha )}{\Gamma (1+(k\alpha +2n)/2)\Gamma (1+(k\alpha -2n)/2)},\nonumber \end{array} \end{aligned}$$
(51)

which leads to (20).

For the second expansion, we make change of variable \(\eta =2\sin \displaystyle \frac{\xi }{2}\) (\(\xi =2\arcsin (\eta /2)\)) and then \(\theta =2^\alpha - \eta ^\alpha \) to compute

$$\begin{aligned} g_{n}(t,\alpha )&=\displaystyle \frac{1}{\pi }\int _{0}^{\pi }e^{-\displaystyle \Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}\cos (n\xi )d\xi \nonumber \\&=\displaystyle \frac{1}{\pi }\int _{0}^{2 } e^{-\eta ^{\alpha }t} \displaystyle \frac{\cos (2n\arcsin \eta /2)}{\sqrt{1-(\eta /2)^2}}d\eta \nonumber \\&=\displaystyle \frac{1}{\pi }\Big (\int _{0}^{(2^\alpha -1)^{1/\alpha }}+\int _{ (2^\alpha -1)^{1/\alpha }}^{2}\Big ) e^{-\eta ^{\alpha }t} \displaystyle \frac{\cos (2n\arcsin \eta /2)}{\sqrt{1-(\eta /2)^2}}d\eta \nonumber \\&= \displaystyle \frac{1}{\pi }\int _{0}^{(2^{\alpha }-1)^{1/\alpha }}e^{-\eta ^{\alpha }t}\cos (2n\arcsin \eta /2) \displaystyle \frac{1}{\sqrt{1-(\eta /2)^2}}d\eta \nonumber \\&\quad +\frac{1}{\pi } \int _{0}^{1} e^{-2^{\alpha }t+\theta t} \cos \left( 2n\arcsin \displaystyle \frac{(2^\alpha -\theta )^{1/\alpha }}{2}\right) \nonumber \\&\quad \displaystyle \frac{1}{\sqrt{1-\left( \displaystyle \frac{(2^\alpha -\theta )^{1/\alpha }}{2}\right) ^2}} \displaystyle \frac{1}{\alpha }(2^\alpha -\theta )^{1/\alpha -1} d\theta \nonumber \\&= \displaystyle \frac{1}{\alpha \pi } \sum _{k=0}^{+\infty }a_{k}^{n}\frac{\gamma _{1}( (2^{\alpha }-1)t,(k+1)/\alpha )}{t^{(k+1)/\alpha }} + \displaystyle \frac{1}{\alpha \pi } \displaystyle \sum _{k=0}^{+\infty }b_{k}^{n}\displaystyle \frac{e^{-2^{\alpha }t}\gamma _{2}(t,k-1/2)}{t^{k+1/2}}. \end{aligned}$$
(52)

Here the Taylor expansion for \( \displaystyle \frac{\cos (2n\arcsin \eta /2)}{\sqrt{1-(\eta /2)^2}}\) is denoted as \(\displaystyle \sum _{k=0}^{+\infty }a_k^n \eta ^{k}\), and the Taylor expansion for \( \displaystyle \frac{\sqrt{\theta }\cos \left( 2n\arcsin \displaystyle \frac{(2^\alpha -\theta )^{1/\alpha }}{2}\right) }{\sqrt{1-\left( \displaystyle \frac{(2^\alpha -\theta )^{1/\alpha }}{2}\right) ^2}} (2^\alpha -\theta )^{1/\alpha -1}\) is denoted as \(\displaystyle \sum _{k=0}^{+\infty }b_k^n \eta ^{k}\), where a term \(\sqrt{\theta }\) is inserted to eliminate the singularity at \(\theta =0\). Thus we prove (21). \(\blacksquare \)

Next,we demonstrate the applicability of (22) in Remark 1 in the case where both n and t are big. In particular, we consider n large enough.

We have

$$\begin{aligned} \begin{array}{ll} g_{n}(t,\alpha )&{}=\displaystyle \frac{1}{2\pi }\int _{0}^{2\pi }e^ {-\displaystyle \Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}e^{-in\xi }d\xi \\ &{}=\displaystyle \frac{1}{\pi }Re\left[ \int _{0}^{\pi }e^{-\displaystyle \Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}e^{-in\xi }d\xi \right] . \end{array} \end{aligned}$$

The function \(e^{-\displaystyle \Big (2\sin \frac{z}{2}\Big )^{\alpha }t}e^{-inz}\) is analytic, hence we may calculate the above integral over a new path from 0 to \(\pi \) in the complex plane. In particular, we consider three subsequent straight line segments, namely, from 0 to \(20(1-i)/n\), then from \(20(1-i)/n\) to \(\pi -20(1+i)/n\), and the last one from \(\pi -20(1+i)/n\) to \(\pi \). When t is big, the integral on the second and the third segments can be omitted. In fact, because n large enough, on the second segment we have \(Re\Big (2\sin \frac{\xi }{2}\Big )^{\alpha }>0\) and

$$\begin{aligned} \Big |e^{-\displaystyle \Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}e^{-in\xi }\Big | \le e^{-\displaystyle Re\Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}e^{-20}. \end{aligned}$$

Similarly, integral on the third segment can be omitted as well. So it amounts to

$$\begin{aligned} \begin{array}{ll} \displaystyle \int _{0}^{20(1-i)/n}e^{-\displaystyle \Big (2\sin \frac{\xi }{2}\Big )^{\alpha }t}e^{-in\xi }d\xi &{}=\displaystyle \int _{0}^{2\sin (10(1-i)/n) } \frac{e^{-\eta ^{\alpha }t} e^{-2ni\arcsin \eta /2}}{\sqrt{1-(\eta /2)^2}}d\eta \\ &{}=\displaystyle \int _{0}^{2\sin (10(1-i)/n) } e^{-\eta ^{\alpha }t}\sum _{k=0} ^{+\infty }c^{n}_{k}\eta ^{k}d\eta .\\ \end{array} \end{aligned}$$

Here \(c_k^n\) stand for the Taylor expansion coefficients of \( \displaystyle \frac{e^{-2ni\arcsin \eta /2}}{\sqrt{1-(\eta /2)^2}}\), which can be computed through symbolic computation.

Accordingly, we can accurately compute the kernel function from

$$\begin{aligned} \begin{aligned}&g_n(t,\alpha )\approx \displaystyle \frac{1}{\alpha \pi } Re\left[ \sum _{k=0}^{+\infty } c_{k}^{n}\frac{1}{t^{(k+1)/\alpha }}\Big (\int _{0}^{(2\sin 10(1-i)/n)^{\alpha }t} e^{-s} s^{(k+1)/\alpha -1}ds\Big ) \right] \\&=\displaystyle \frac{1}{\alpha \pi } Re\left[ \sum _{k=0}^{+\infty }c_{k}^{n}\frac{1}{t^{(k+1)/\alpha }}\gamma _{1}\Big ( \Big (2\sin 10(1-i)/n\Big )^{\alpha }t, (k+1)/\alpha \Big )\right] .\\ \end{aligned} \end{aligned}$$
(53)

The function \({\dot{g}}_{0}(t,\alpha )\) is treated in the same way. We give the following proof of Lemma 2. \(\square \)

Proof

As a matter of fact, we consider \(n=0\) in (20) and (21), and take time derivative. The (20) one gives

$$\begin{aligned} \begin{array}{ll} {\dot{g}}_{0}(t,\alpha )&{}=-\displaystyle \sum _{k=0}^{+\infty }\frac{(-t)^{k-1}k}{k!} \displaystyle \frac{\Gamma (1+k\alpha )}{\Gamma (1+(k\alpha +2n)/2)\Gamma (1+(k\alpha -2n)/2)}\\ &{}=-\displaystyle \sum _{k=0}^{+\infty }\frac{(-t)^{k}}{k!}\displaystyle \frac{\Gamma (1+k\alpha +\alpha )}{\Gamma (1+(k\alpha +\alpha +2n)/2)\Gamma (1+(k\alpha +\alpha -2n)/2)}, \end{array} \end{aligned}$$
(54)

which leads to (28). The (29) can be obtained in the same way. \(\blacksquare \)

Appendix B: Decoupled Governing System in Two Space Dimensions

Now we give the proof of Theorem 2.

Proof

To prove (42), we first show that \(\{f_{m,n}(t,\vec {\kappa },\vec {\alpha })|m,n\in {\mathbb {Z}}\}\) form a fundamental solution to (41), i.e., it holds that

$$\begin{aligned} \begin{array}{lll} {\dot{f}}_{m,n}(t,\vec {\kappa },\vec {\alpha })&{}=\kappa _{1} \displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1}) f_{m-p,n} (t,\vec {\kappa },\vec {\alpha })+\kappa _{2}\sum _{q=-\infty }^{+\infty }c_{q}(\alpha _{2}) f_{m,n-q}(t,\vec {\kappa },\vec {\alpha })\\ &{}\quad +\displaystyle \frac{1}{4\pi ^2}\int _{0}^{2\pi }\int _{0}^{2\pi }e^{-im\xi -in\eta }\Big (\kappa _{1} (2\sin (\xi /2))^{\alpha _{1}}+\kappa _{2}(2\sin (\eta /2))^{\alpha _{2}}\Big )\\ &{} d\xi d\eta \delta (t), (m,n) \ne (0,0);\\ f_{m,n}(0,\vec {\kappa },\vec {\alpha })&{}=-\displaystyle \frac{1}{4\pi ^2}\int _{0}^{2\pi } \int _{0}^{2\pi }e^{-im\xi -in\eta }\Big (\kappa _{1}(2\sin (\xi /2))^{\alpha _{1}} +\kappa _{2}(2\sin (\eta /2))^{\alpha _{2}}\Big ) d\xi d\eta ;&{}\\ f_{0,0}(t,\vec {\kappa },\vec {\alpha })&{}=\delta (t). &{} \end{array} \end{aligned}$$
(55)

In fact, one can easily see for \((m,n)\ne (0,0)\),

$$\begin{aligned}&s{\tilde{f}}_{m,n}(s,\vec {\kappa },\vec {\alpha })-\kappa _{1}\displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1}) {\tilde{f}}_{m-p,n}(s,\vec {\kappa },\vec {\alpha })-\kappa _{2}\displaystyle \sum _{q=-\infty }^{+\infty }c_{q}(\alpha _{1}) {\tilde{f}}_{m,n-q}(s,\vec {\kappa },\vec {\alpha })\nonumber \\&\quad =\displaystyle \frac{1}{4\pi ^2{\tilde{g}}_{0,0}(s,\vec {\kappa },\vec {\alpha })} \int _{0}^{2\pi }\int _{0}^{2\pi }\nonumber \\&\quad \frac{se^{-im\xi -in\eta }- \kappa _{1}\displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1})e^{-i(m-p)\xi -in\eta } -\kappa _{2}\displaystyle \sum _{q=-\infty }^{+\infty }c_{q}(\alpha _{2})e^{-im\xi -i(n-q)\eta }}{s+\kappa _{1}(2\sin (\xi /2))^{\alpha _{1}} +\kappa _{2}(2\sin (\eta /2))^{\alpha _{2}}}d\xi d\eta \nonumber \\&\quad =\displaystyle \frac{1}{4\pi ^2{\tilde{g}}_{0,0}(s,\vec {\kappa },\vec {\alpha })}\int _{0}^{2\pi }\int _{0}^{2\pi } \frac{e^{-im\xi -in\eta }\left( s-\kappa _{1}\displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1})e^{ip\xi }-\kappa _{2} \displaystyle \sum _{q=-\infty }^{+\infty }c_{q}(\alpha _{2})e^{i{q}\eta }\right) }{s+\kappa _{1}(2\sin (\xi /2))^{\alpha _{1}} +\kappa _{2}(2\sin (\eta /2))^{\alpha _{2}}}d\xi d\eta \nonumber \\&\quad =\displaystyle \frac{1}{4\pi ^2{\tilde{g}}_{0,0}(s,\vec {\kappa },\vec {\alpha })}\int _{0}^{2\pi }\int _{0}^{2\pi } \frac{e^{-im\xi -in\eta }\Big (s+\kappa _{1}(2\sin (\xi /2))^{\alpha _{1}}+\kappa _{2}(2\sin (\eta /2))^{\alpha _{2}}\Big )}{s+\kappa _{1}(2\sin (\xi /2))^{\alpha _{1}}+\kappa _{2}(2\sin (\eta /2))^{\alpha _{2}}}d\xi d\eta \nonumber \\&\quad =\displaystyle \frac{1}{4\pi ^2{\tilde{g}}_{0,0}(s,\vec {\kappa },\vec {\alpha })}\int _{0}^{2\pi }\int _{0}^{2\pi }e^{-im\xi -in\eta }d\xi d\eta \nonumber \\&\quad =0. \end{aligned}$$
(56)

In the mean time, by definition we have \({\tilde{f}}_{0,0}(s,\vec {\kappa },\vec {\alpha })=1\), hence \(f_{0,0}(t,\vec {\kappa },\vec {\alpha })=\delta (t)\).

Secondly, from (45)(46), direct calculations show that

$$\begin{aligned} \begin{array}{ll} &{}\kappa _{1}\displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1}){\tilde{g}}_{-p,0}(s,\vec {\kappa },\vec {\alpha })+\kappa _{2}\displaystyle \sum _{q=-\infty }^{+\infty }c_{q}(\alpha _{2}){\tilde{g}}_{0,-q}(s,\vec {\kappa },\vec {\alpha })\\ &{}\quad =\displaystyle \frac{1}{4\pi ^2}\int _{0}^{2\pi }\int _{0}^{2\pi }\displaystyle \frac{\kappa _{1}\displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1})e^{ip\xi }+\kappa _{2}\displaystyle \sum _{q=-\infty }^{+\infty }c_{q}(\alpha _{2})e^{iq\eta }}{s+\kappa _{1}(2\sin \xi /2)^{\alpha _{1}}+\kappa _{2}(2\sin \eta /2)^{\alpha _{2}}}d\xi d\eta \\ &{}\quad =\displaystyle \frac{1}{4\pi ^2}\int _{0}^{2\pi }\int _{0}^{2\pi }\displaystyle \frac{-\kappa _{1}(2\sin (\xi /2))^{\alpha _{1}}-\kappa _{2}(2\sin (\eta /2))^{\alpha _{2}}}{ s+\kappa _{1}(2\sin \xi /2)^{\alpha _{1}}+\kappa _{2}(2\sin \eta /2)^{\alpha _{2}}}d\xi d\eta \\ &{}\quad =s{\tilde{g}}_{0,0}(s,\vec {\kappa },\vec {\alpha })-1. \end{array} \end{aligned}$$
(57)

This relates the kernel functions defined in (43) by dividing \({\tilde{g}}_{0,0}(s,\vec {\kappa },\vec {\alpha })\) on the both side of (57),

$$\begin{aligned} {\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha })=\kappa _{1} \displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1}){\tilde{f}}_{-p,0}(s,\vec {\kappa }, \vec {\alpha })+\kappa _{2}\displaystyle \sum _{q=-\infty }^{+\infty }c_{q}(\alpha _{2}) {\tilde{f}}_{0,-q}(s,\vec {\kappa },\vec {\alpha }). \end{aligned}$$
(58)

Hence from (56) and (57) we get a uniform expression for \({\tilde{f}}_{m,n}(s,\vec {\kappa },\vec {\alpha })\)

$$\begin{aligned}&s{\tilde{f}}_{m,n}(s,{\tilde{\kappa }},{\tilde{\alpha }})=\kappa _{1} \displaystyle \sum _{p=-\infty }^{+\infty }c_{p}(\alpha _{1}){\tilde{f}}_{m-p,n} (s,\vec {\kappa },\vec {\alpha })\nonumber \\&\quad +\kappa _{2}\displaystyle \sum _{q=-\infty }^{+\infty }c_{q} (\alpha _{2}){\tilde{f}}_{m,n-q}(s,\vec {\kappa },\vec {\alpha }) +\delta _{0,0}^{m,n}(s-{\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha })), \end{aligned}$$
(59)

with \(\delta ^{m,n}_{0,0}\) the Kronecker delta.

Noticing \({\tilde{f}}_{0,0}(s,\vec {\kappa },\vec {\alpha })=1\), we are now ready to verify that the solution to (42), or equivalently,

$$\begin{aligned} s{\tilde{\phi }}_{m,n}(s)={\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha }) {\tilde{\phi }}_{m,n}(s)+\sum _{ (p,q)}\phi _{p,q}(0){\tilde{f}}_{m-p,n-q} (s,{\tilde{\kappa }},{\tilde{\alpha }}) \end{aligned}$$
(60)

solves the original lattice system (41), namely,

$$\begin{aligned} s{\tilde{\phi }}_{m,n}(s)- \phi _{m,n}(0) =\kappa _{1}\sum _{p=-\infty }^{+\infty } c_p(\alpha _{1}) {\tilde{\phi }}_{m-p,n}(s)+\kappa _{2}\sum _{q=-\infty }^{+\infty } c_q(\alpha _{2}) {\tilde{\phi }}_{m,n-q}(s). \end{aligned}$$
(61)

As a matter of fact, we compute

$$\begin{aligned}&s{\tilde{\phi }}_{m,n}(s)- \phi _{m,n}(0) -\kappa _{1}\displaystyle \sum _{k=-\infty }^{+\infty } c_k(\alpha _{1}) {\tilde{\phi }}_{m-k,n}(s)-\kappa _{2}\displaystyle \sum _{l=-\infty }^{+\infty } c_l(\alpha _{2}) {\tilde{\phi }}_{m,n-l}(s) \\&\quad = \displaystyle \frac{s}{s-{\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha })} \sum _{p,q} \phi _{p,q}(0){\tilde{f}}_{m-p,n-q}(s,{\tilde{\kappa }},{\tilde{\alpha }}) -\phi _{m,n}(0) \\&\qquad -\displaystyle \frac{\kappa _{1}}{s-{\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha })} \displaystyle \sum _{k=-\infty }^{+\infty } c_k(\alpha _{1}) \displaystyle \sum _{p,q} \phi _{p,q}(0){\tilde{f}}_{m-k-p,n-q}(s,\vec {\kappa },\vec {\alpha }) \\&\qquad -\displaystyle \frac{\kappa _{2}}{s-{\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha })} \displaystyle \sum _{l=-\infty }^{+\infty } c_l(\alpha _{2}) \displaystyle \sum _{p,q} \phi _{p,q}(0){\tilde{f}}_{m-p,n-l-q}(s,\vec {\kappa },\vec {\alpha }) \\&\quad = \displaystyle \frac{1}{s-{\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha })} \sum _{p,q} \phi _{p,q}(0)\Big [s{\tilde{f}}_{m-p,n-q}(s,{\tilde{\kappa }},{\tilde{\alpha }})- \kappa _{1}\sum _{k=-\infty }^{+\infty } c_k(\alpha _{1}){\tilde{f}}_{m-k-p,n-q}(s,\vec {\kappa },\vec {\alpha })\\&\qquad - \kappa _{2}\displaystyle \sum _{l=-\infty }^{+\infty } c_l(\alpha _{2}){\tilde{f}}_{m-p,n-l-q}(s,\vec {\kappa },\vec {\alpha })\Big ] - \phi _{m,n}(0)\\&\quad = \displaystyle \frac{1}{s-{\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha })} \sum _{p,q} \phi _{p,q}(0)\delta ^{m-p,n-q}_{0,0} (s- {\tilde{F}}_{2}(s,\vec {\kappa },\vec {\alpha }))- \phi _{m,n}(0)\\&\quad =0. \end{aligned}$$

\(\blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Pang, G. Accurate Boundary Treatment for Riesz Space Fractional Diffusion Equations. J Sci Comput 89, 42 (2021). https://doi.org/10.1007/s10915-021-01655-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01655-0

Keywords

Navigation