Skip to main content
Log in

A Hybrid Moment Method for Multi-scale Kinetic Equations Based on Maximum Entropy Principle

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a hybrid method for the multi-scale kinetic equations in the framework of the hyperbolic moment method (Cai and Li in SIAM J Sci Comput 32(5):2875–2907, 2010). In this method, the fourth order moment system is chosen as the governing equations in the fluid region, while the hyperbolic moment system with arbitrary order is chosen as the governing equations in the kinetic region. When transiting from the fluid regime to the kinetic regime, the maximum entropy principle is adopted to reconstruct the kinetic distribution function, so that the information in the fluid region can be utilized thoroughly. Moreover, only one uniform set of numerical scheme is needed for both the fluid and kinetic regions. Numerical tests validate this new hybrid method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data available on request from the authors. The data that support the findings of this study are not openly available due to the reason that the code to simulate the examples is not open source, and are available from the corresponding author upon reasonable request for scientific usage.

References

  1. Abramov, R., et al.: The multidimensional maximum entropy moment problem: a review of numerical methods. Commun. Math. Sci. 8(2), 377–392 (2010)

    Article  MathSciNet  Google Scholar 

  2. Alessandro, A., Gabriella, P.: A hybrid method for hydrodynamic-kinetic flow—Part II—coupling of hydrodynamic and kinetic models. J. Comput. Phys. 231(16), 5217–5242 (2012)

    Article  MathSciNet  Google Scholar 

  3. Alofs, D.J., Flagan, R.C., Springer, G.S.: Density distribution measurements in rarefied gases contained between parallel plates at high temperature differences. Phys. Fluids 14(3), 529–533 (1971)

    Article  Google Scholar 

  4. Bird, G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford (1994)

    Google Scholar 

  5. Caflisch, E., Dimarco, G., Pareschi, L.: An hybrid method for the Boltzmann equation. AIP Conf. Proc. 1786(1), 180001 (2016)

    Article  Google Scholar 

  6. Cai, Z., Fan, Y., Li, R.: Globally hyperbolic regularization of Grad’s moment system. Comm. Pure Appl. Math. 67(3), 464–518 (2014)

  7. Cai, Z., Fan, Y., Li, R., Qiao, Z.: Dimension-reduced hyperbolic moment method for the Boltzmann equation with BGK-type collision. Commun. Comput. Phys. 15(5), 1368–1406 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cai, Z., Li, R.: Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010)

    Article  MathSciNet  Google Scholar 

  9. Cai, Z., Li, R., Qiao, Z.: Globally hyperbolic regularized moment method with applications to microflow simulation. Comput. Fluids 81, 95–109 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cai, Z., Torrilhon, M.: Numerical simulation of microflows using moment methods with linearized collision operator. J. Sci. Comput. 74(1), 336–374 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dal Maso, G., Lefloch, P., Murat, F.: Definition and weak stability of nonconservative products. J. Math. Pure. Appl. 74(6), 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  12. Degond, P., Dimarco, G., Pareschi, L.: The moment-guided Monte Carlo method. Int. J. Numer. Methods Fluids 67(2), 189–213 (2011)

    Article  MathSciNet  Google Scholar 

  13. Dimarco, G., Pareschi, L.: Hybrid multiscale methods ii. Kinetic equations. SIAM Multiscale Model Simul. 6(4), 1169–1197 (2008)

    Article  MathSciNet  Google Scholar 

  14. Dreyer, W.: Maximisation of the entropy in non-equilibrium. J. Phys. A Math. Gen. 20(18), 6505–6517 (1987)

    Article  Google Scholar 

  15. Fan, Y., Li, R., Zheng, L.: A nonlinear hyperbolic model for radiative transfer equation in slab geometry. SIAM J. Appl. Math. 80(6), 2388–2419 (2020)

    Article  MathSciNet  Google Scholar 

  16. Filbet, F., Jin, S.: A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources. J. Comput. Phys. 229, 7625–7648 (2010)

    Article  MathSciNet  Google Scholar 

  17. Filbet, F., Rey, T.: A hierarchy of hybrid numerical methods for multiscale kinetic equations. SIAM J. Sci. Comput. 37(3), A1218–A1247 (2015)

    Article  MathSciNet  Google Scholar 

  18. Filbet, F., Xiong, T.: A hybrid discontinuous Galerkin scheme for multi-scale kinetic equations. J. Comput. Phys. 372, 841–863 (2018)

    Article  MathSciNet  Google Scholar 

  19. Gamba, I., Haack, J., Hauck, C., Hu, J.: A fast spectral method for the Boltzmann collision operator with general collision kernels. SIAM J. Sci. Comput. 39(14), B658–B674 (2017)

    Article  MathSciNet  Google Scholar 

  20. Gamba, I., Rjasanow, S.: Galerkin–Petrov approach for the Boltzmann equation. J. Comput. Phys. 366, 341–365 (2018)

    Article  MathSciNet  Google Scholar 

  21. Goldstein, D., Sturtevant, B., Broadwell, J.E.: Investigations of the motion of discrete-velocity gases. Prog. Astronaut. Aeronaut. 117, 100–117 (1989)

    Google Scholar 

  22. Grad, H.: On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  Google Scholar 

  23. Hauck, C.: High-order entropy-based closures for linear transport in slab geometry. Commun. Math. Sci. 9(1), 187–205 (2011)

    Article  MathSciNet  Google Scholar 

  24. Hu, Z., Li, R., Lu, T., Wang, Y., Yao, W.: Simulation of an \(n^{+}\text{- }n\text{- }n^{+}\) diode by using globally-hyperbolically-closed high-order moment models. J. Sci. Comput. 59(3), 761–774 (2014)

    Article  MathSciNet  Google Scholar 

  25. Jaynes, E.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  MathSciNet  Google Scholar 

  26. Kolobov, V., Arslanbekov, R., Aristov, V., Frolova, A., Zabelok, S.: Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement. J. Comput. Phys. 223(2), 589–608 (2007)

    Article  Google Scholar 

  27. Levermore, C.: Moment closure hierarchies for kinetic theories. J. Stat. Phys. 83(5–6), 1021–1065 (1996)

    Article  MathSciNet  Google Scholar 

  28. Levermore, C., Morokoff, J., Nadiga, B.: Moment realizability and the validity of the Navier–Stokes equations for rarefied gas dynamics. Phys. Fluids 10(12), 3214–3226 (1998)

    Article  MathSciNet  Google Scholar 

  29. Li, W., Fan, Y., Zheng, L.: On the five-moment maximum entropy system of one-dimensional Boltzmann equation. (in preparation) (2020)

  30. McDonald, J., Groth, C.: Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution. Continu. Mech. Therm. 25(5), 573–603 (2013)

    Article  MathSciNet  Google Scholar 

  31. Mouhot, C., Pareschi, L.: Fast algorithms for computing the Boltzmann collision operator. Math. Comp. 75(256), 1833–1852 (2006)

    Article  MathSciNet  Google Scholar 

  32. Müller, I., Ruggeri, T.: Extended Thermodynamics. Springer tracts in natural philosophy, vol. 37. Springer, New York (1993)

  33. Panferov, A., Heintz, A.: A new consistent discrete-velocity model for the Boltzmann equation. Math. Method Appl. Sci. 25(7), 571–593 (2002)

    Article  MathSciNet  Google Scholar 

  34. Pareschi, L., Perthame, B.: A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theor. Stat. 25(3–5), 369–382 (1996)

    Article  MathSciNet  Google Scholar 

  35. Schaerer, R., Bansal, P., Torrilhon, M.: Efficient algorithms and implementations of entropy-based moment closures for rarefied gases. J. Comput. Phys. 340, 138–159 (2017)

    Article  MathSciNet  Google Scholar 

  36. Struchtrup, H.: Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. SIAM Multiscale Model. Simul. 3(1), 221–243 (2005)

    Article  MathSciNet  Google Scholar 

  37. Struchtrup, H.: Macroscopic Transport Equations for Rarefied Gas Flows: Approximation Methods in Kinetic Theory. Springer (2005)

  38. Struchtrup, H., Torrilhon, M.: Higher-order effects in rarefied channel flows. Phys. Rev. E 78, 046301 (2008)

    Article  MathSciNet  Google Scholar 

  39. Tiwari, S.: Coupling of the Boltzmann and Euler equations with automatic domain decomposition. J. Comput. Phys. 144(2), 710–726 (1998)

    Article  MathSciNet  Google Scholar 

  40. Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. SIAM Multiscale. Model Simul. 5(3), 695–728 (2006)

  41. Wadsworth, D.C.: Slip effects in a confined rarefied gas. I: temperature slip. Phys. Fluids 5(7), 1831–1839 (1993)

    Article  Google Scholar 

  42. Wang, Y., Cai, Z.: Approximation of the Boltzmann collision operator based on Hermite spectral method. J. Comput. Phys. 397(15), 66 (2019)

    MathSciNet  Google Scholar 

  43. Xiong, T., Qiu, J.: A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation. J. Comput. Phys. 336, 164–191 (2017)

    Article  MathSciNet  Google Scholar 

  44. Zhang, J., Shao, Y., Rangan, A.V., Tao, L.: A coarse-graining framework for spiking neuronal networks: from strongly-coupled conductance-based integrate-and-fire neurons to augmented systems of odes. J. Comput. Neurosci. 46(2), 211–232 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Prof. Ruo Li from Peking University for his valuable suggestions to this research project. This research of Weiming Li is supported in part by Science Challenge Project (No. TZ2016002) and National Natural Science Foundation of China (12001051). The research of Peng Song is supported in part by National Natural Science Foundation of China (91630310) and the CAEP foundation (No. CX20200026). And that of Yanli Wang is supported in part by Science Challenge Project (No. TZ2016002) and National Natural Science Foundation of China (U1930402, 12031013).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Weiming Li and Yanli Wang. The first draft of the manuscript was written by Weiming Li and Yanli Wang. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanli Wang.

Ethics declarations

Conflict of interest

The authors declare that no conflicts of interest.

Code Availability

Code available on request from the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Numerical Scheme for the Regularized Moment Method

In this section, we will introduce the numerical scheme of the dimensional reduced regularized moment method. We refer readers [7] for more details. Let \(\varvec{\omega }= (\varvec{\omega }^{(g)}, \varvec{\omega }^{(h)})\) be the variables of the reduced system, where \(\varvec{\omega }^{(f)}, f = g, h\) is the corresponding variable of the distribution function f in (2.28). The reduced moment system is written as

$$\begin{aligned} \dfrac{\partial {\varvec{\omega }}}{\partial {t}} + \sum _{j=1}^2\mathbf{B_j} \dfrac{\partial {\varvec{\omega }}}{\partial {x}} =\mathbf{Q}\varvec{\omega }. \end{aligned}$$
(A.1)

Splitting method is adopted here, where (A.1) is split into the convection part and the collision part

  • convection part:

    $$\begin{aligned} \dfrac{\partial {\varvec{\omega }}}{\partial {t}} + \sum _{j=1}^2\mathbf{B_j} \dfrac{\partial {\varvec{\omega }}}{\partial {x}} =0. \end{aligned}$$
    (A.2)
  • collision part:

    $$\begin{aligned} \dfrac{\partial {\varvec{\omega }}}{\partial {t}} = \mathbf{Q}\varvec{\omega }. \end{aligned}$$
    (A.3)

The detailed algorithm is as below,

  1. 1.

    Let \(n = 0\), and give the initial value of \(\varvec{\omega }_i^n\).

  2. 2.

    Calculate the time step length \(\Delta t_n\) by CFL condition.

  3. 3.

    Solve the convection part using the finite volume method with the HLL flux, and denote the result as \(\varvec{\omega }_{i}^{n, *}\).

  4. 4.

    Update the collision step using \(\varvec{\omega }_i^{n,*}\) as the initial condition.

  5. 5.

    Let \(t \leftarrow t + \Delta t_n\) and \(n \leftarrow n+1\); then go to Step 2.

The numerical scheme for the convection step and the collision is listed below in detail.

Convection step For the convection part, the moment equation (A.2) is reformulated as

$$\begin{aligned} \dfrac{\partial {\varvec{\omega }}}{\partial {t}} + \dfrac{\partial {\mathbf{F}(\varvec{\omega })}}{\partial {x}} +\mathbf{R}(\varvec{\omega }) \dfrac{\partial {\varvec{\omega }}}{\partial {x}} = 0. \end{aligned}$$
(A.4)

Then, the finite volume method is utilized here, and the detailed scheme is

$$\begin{aligned} \varvec{\omega }_{i}^{n, *} = \varvec{\omega }_i^n - \frac{\Delta t_n}{\Delta x} \left( {\hat{{\varvec{F}}}}_{i+1/2}^n - {\hat{{\varvec{F}}}}_{i - 1/2}^n\right) - \frac{\Delta t_n}{\Delta x}\left( {\hat{{\varvec{R}}}}_{i+1/2}^{n-} - {\hat{{\varvec{R}}}}_{i-1/2}^{n+}\right) , \end{aligned}$$
(A.5)

where \({\hat{{\varvec{F}}}}_{i+1/2}^{n}\) is the HLL numerical flux defined as

$$\begin{aligned} {\hat{{\varvec{F}}}}_{i+1/2}^{n} = \left\{ \begin{array}{ll} {{\varvec{F}}}(\varvec{\omega }_i^n),&{} \lambda _{i+1/2}^{L,n} \geqslant 0, \\[2mm] \frac{\lambda _{i+1/2}^{R,n} {{\varvec{F}}}(\varvec{\omega }_{i}^n) - \lambda _{i+1/2}^{L,n} {{\varvec{F}}}(\varvec{\omega }_{i+1}^n)}{\lambda _{i+1/2}^{R,n} - \lambda _{i+1/2}^{L,n}} + \frac{\lambda _{i+1/2}^{L,n} \lambda _{i+1/2}^{R,n} (\varvec{\omega }_{i+1}^n - \varvec{\omega }_{i}^n)}{\lambda _{i+1/2}^{R,n} - \lambda _{i+1/2}^{L,n}}, &{} \lambda _{i+1/2}^{L,n}< 0 < \lambda _{i+1/2}^{R,n}, \\[2mm] {\varvec{F}}(\varvec{\omega }_{i+1}^n), &{} \lambda _{i+1/2}^{R,n} \leqslant 0. \end{array} \right. \nonumber \\ \end{aligned}$$
(A.6)

The numerical flux for the non-conservation part \({\hat{{\varvec{R}}}}_{i+1/2}^{n\pm }\) is

$$\begin{aligned} \begin{array}{c} {\hat{{\varvec{R}}}}_{i+1/2}^{n-} = \left\{ \begin{array}{ll} 0, &{} \lambda _{i+1/2}^{L,n} \geqslant 0, \\ -\frac{\lambda _{i+1/2}^{L,n}}{\lambda _{i+1/2}^{R,n} - \lambda _{i+1/2}^{L,n}} {\varvec{g}}_{i+1/2}^n , &{} \lambda _{i+1/2}^{L,n}< 0< \lambda _{i+1/2}^{R,n}, \\ {\varvec{g}}_{i+1/2}^n, &{} \lambda _{i+1/2}^{R,n} \leqslant 0, \end{array} \right. \\ \\[2mm] {\hat{{\varvec{R}}}}_{i+1/2}^{n+} = \left\{ \begin{array}{ll} -{\varvec{g}}_{i+1/2}^n, &{} \lambda _{i+1/2}^{L,n} \geqslant 0, \\ -\frac{\lambda _{i+1/2}^{R,n}}{\lambda _{i+1/2}^{R,n} - \lambda _{i+1/2}^{L,n}} {\varvec{g}}_{i+1/2}^n , &{} \lambda _{i+1/2}^{L,n}< 0 < \lambda _{i+1/2}^{R,n}, \\ 0, &{} \lambda _{i+1/2}^{R,n} \leqslant 0, \end{array} \right. \end{array} \end{aligned}$$
(A.7)

with

$$\begin{aligned} {\varvec{g}}_{i+1/2}^n = \int _0^1 {\varvec{R}}(\Phi (s; {\varvec{q}}_i^n; {\varvec{q}}_{i+1}^n)) \dfrac{\partial {\Phi }}{\partial {s}}(s; {\varvec{q}}_i^n; {\varvec{q}}_{i+1}^n) \,\mathrm {d}s, \end{aligned}$$
(A.8)

where \(\Phi (s; \cdot , \cdot )\) is a path to connect the two states. We refer [11] for more details. The characteristic speeds \(\lambda _{i+1/2}^R\) and \(\lambda _{i+1/2}^L\) are

$$\begin{aligned} \begin{aligned} \lambda _{i+1/2}^{R,n}&= \max \left( u_{1,i}^n + C_{M+1}\sqrt{\theta _i^n}, u_{1,j}^n + C_{M+1} \sqrt{\theta _{i+1}^n}\right) , \\ \lambda _{i+1/2}^{L,n}&= \max \left( u_{1,i}^n - C_{M+1}\sqrt{\theta _i^n}, u_{1,j}^n - C_{M+1} \sqrt{\theta _{i+1}^n}\right) , \end{aligned} \end{aligned}$$
(A.9)

where \(C_{M+1}\) is the maximal roots of Hermite polynomial of degree \(M+1\). The time step length is also decided by the characteristic velocity as

$$\begin{aligned} \frac{ \Delta t^n \max \limits _i \left\{ \left| \lambda _{i+1/2}^{R,n}\right| , \left| \lambda _{i+1/2}^{L,n}\right| \right\} }{\Delta x} \leqslant \mathrm{CFL}. \end{aligned}$$
(A.10)

Collision step For the BGK and Shakhov model, the collision part can be solved exactly in the reduced regularized moment method. For neatness, the superscript \(n, n+1\) and the subscripts i are omitted. The solutions are as below:

  • For the BGK model:

    $$\begin{aligned} \begin{aligned} g_{\alpha }&= g_{\alpha }^{*} \exp \left( -\frac{\Delta t}{\tau }\right) , \quad 2 \leqslant |\alpha | \leqslant M, \\ h_{0}&= g_0^{*}\theta ^{*} \left( 1 - \exp \left( \frac{\Delta t}{\tau }\right) \right) + h_{0}^{*} \exp \left( -\frac{\Delta t}{\tau }\right) , \\ h_{\alpha }&= h_{\alpha }^{*} \exp \left( -\frac{\Delta t}{\tau }\right) , \quad 1 \leqslant |\alpha | \leqslant M-2. \end{aligned} \end{aligned}$$
    (A.11)
  • For the Shakhov model:

    $$\begin{aligned} \begin{aligned} g_{3e_1}&= g_{3e_1}^{*}\exp \left( -\frac{\Delta t}{\tau }\right) + \frac{1}{5}q_i^{*}\left( \exp \left( -\frac{ \Pr \Delta t}{\tau }\right) -\exp \left( -\frac{\Delta t}{\tau }\right) \right) , \\ g_{\alpha }&= g_{\alpha }^{*} \exp \left( -\frac{\Delta t}{\tau }\right) , \quad |\alpha | = 2 ~\mathrm{or}~ 4 \leqslant |\alpha | \leqslant M, \\ h_{0}&= g_0^{*}\theta ^{*} \left( 1 - \exp \left( \frac{\Delta t}{\tau }\right) \right) + h_{0}^{*} \exp \left( -\frac{\Delta t}{\tau }\right) , \\ h_{e_1}&= h_{e_1}^{*}\exp \left( -\frac{\Delta t}{\tau }\right) + \frac{1}{5}q_i^{*}\left( \exp \left( -\frac{ \Pr \Delta t}{\tau }\right) -\exp \left( -\frac{\Delta t}{\tau }\right) \right) , \\ h_{3e_1}&= h_{3e_1}^{*}\exp \left( -\frac{\Delta t}{\tau }\right) + \frac{\theta ^{*}}{5}q_i^{*}\left( \exp \left( -\frac{ \Pr \Delta t}{\tau }\right) -\exp \left( -\frac{\Delta t}{\tau }\right) \right) , \\ h_{\alpha }&= h_{\alpha }^{*} \exp \left( -\frac{\Delta t}{\tau }\right) , \quad |\alpha | = 2 ~\mathrm{or}~ 4 \leqslant |\alpha | \leqslant M-2. \end{aligned} \end{aligned}$$
    (A.12)

Appendix B: Reduced Moment System

When the distribution function has some symmetric properties in the direction \(v_2\) and \(v_3\). The Chu reduction is utilized here and we refer [7] for more details. With this dimension reduction method, we will introduce two distribution functions in 1D microscopic velocity space (3.17), which is approximated as (3.18). The reduced Boltzmann with Shakhov collision model for \(g(t,x, v_1)\) and \(h(t, x, v_1)\) is

$$\begin{aligned} \begin{aligned} \dfrac{\partial {g}}{\partial {t}} + v_1 \dfrac{\partial {g}}{\partial {x}}&= \frac{1}{\epsilon } \left( g^N - g\right) , \\ \dfrac{\partial {h}}{\partial {t}} + v_1 \dfrac{\partial {h}}{\partial {x}}&= \frac{1}{\epsilon } \left( h^N - h\right) , \end{aligned} \end{aligned}$$
(B.1)

where

$$\begin{aligned} \begin{aligned} g^N&= \left[ 1 + \dfrac{(1 - \mathrm{Pr})(v_1 - u_1(t, x)) q(t, x)}{5\rho (t, x) [\theta (t, x)]^2}\left( \frac{|v_1 - u_1(t, x)|^2}{\theta (t, x)} - 5\right) \right] g_{\mathrm{eq}}, \\ h^N&= \left[ 1 + \dfrac{(1 - \mathrm{Pr})(v_1 - u_1(t, x)) q(t, x)}{5\rho (t, x) [\theta (t, x)]^2}\left( \frac{|v_1 - u_1(t, x)|^2}{\theta (t, x)} - 3\right) \right] h_{\mathrm{eq}}, \end{aligned} \end{aligned}$$
(B.2)

with

$$\begin{aligned} g_{\mathrm{eq}} = \frac{\rho }{\sqrt{2 \pi \theta }} \exp \left( -\frac{(v_1 - u_1(t,x))^2}{2 \theta }\right) , \qquad h_\mathrm{eq} = \theta g_{\mathrm{eq}}. \end{aligned}$$
(B.3)

The relationship of the macroscopic variables and the distribution functions are

$$\begin{aligned} \begin{aligned} \rho&= \int _{{\mathbb {R}}} g(t, x, v_1) \,\mathrm {d}v_1, \qquad \rho u_1 = \int _{{\mathbb {R}}} v_1 g(t, x ,v_1) \,\mathrm {d}v_1, \\ \frac{3}{2}\rho \theta&= \int _{{\mathbb {R}}} \left( \frac{1}{2} |v_1 -u_1|^2 g + h\right) \,\mathrm {d}v_1, \qquad q_1 = \int _{{\mathbb {R}}} (v_1 - u_1) \left( \frac{1}{2} |v_1 - u_1|^2 g + h\right) \,\mathrm {d}v_1. \end{aligned} \end{aligned}$$
(B.4)

Substituting (3.18) into (B.1), and matching order of the basis functions, we can derive the moment equations for the reduced distribution function as

$$\begin{aligned} \begin{aligned}&\dfrac{\partial {\psi _{i}}}{\partial {t}} + \left( \theta \dfrac{\partial {\psi _{i -1}}}{\partial {x}} +u_1\dfrac{\partial {\psi _{i}}}{\partial {x_1}} +(1-\delta _{N,i})(i + 1) \dfrac{\partial {\psi _{i+e_j}}}{\partial {x}} \right) + \dfrac{\partial {u_1}}{\partial {t}} \psi _{i-1} \\&\quad + \dfrac{\partial {u_1}}{\partial {x}} \left[ \theta \psi _{i-2} +u_1\psi _{i-1} + (1-\delta _{N,i})(i + 1) \psi _{i} \right] + \frac{1}{2} \dfrac{\partial {\theta }}{\partial {t}} \psi _{i-2} \\&\quad + \frac{1}{2}\theta \dfrac{\partial {\theta }}{\partial {x_1}} \left[ \theta \psi _{i-3} +u_1 \psi _{i-2} + (1-\delta _{N,i})(i + 1) \psi _{i-1} \right] = \frac{1}{\epsilon } (\Delta _{i}(\psi ) - \psi _{i}), \qquad i \leqslant N, \end{aligned} \end{aligned}$$
(B.5)

where \(\psi = g, h\). When \(\psi = g, N = M\), while \(N = M - 2\), if \(\psi = h\). Here \(\Delta _i(\psi )\) is the deduced by the collision term as

$$\begin{aligned} \begin{array}{cc} \Delta _i(g) = \left\{ \begin{array}{ll} g_0, &{} i = 0, \\ (1 - \mathrm Pr) q_i / 5, &{} i = 3, \\ 0, &{} \mathrm{otherwise,} \end{array} \right. &{} \Delta _i(h) = \left\{ \begin{array}{ll} \theta g_0, &{} i = 0, \\ (1 - \mathrm Pr) q_i / 5, &{} i = 1, 3, \\ 0, &{} \mathrm{otherwise,} \end{array} \right. \end{array} \end{aligned}$$
(B.6)

Appendix C: Integration Algorithm in Computing the Maximum Entropy Distribution Function

For computing the gradient and Hessian matrix when applying the Newton iteration to solve the maximum entropy distribution ansatz, we need to compute the high order moments of the distribution ansatz. We employ an adaptive integration technique based on the location of the peaks of the distribution function. Since the maximum entropy distribution function takes the form of \(\exp (P(v))\), where P(v) is a quartic function, its peak values could be computed by taking the roots of \(P'(v)\). In [29], the detailed algorithm has been provided, and we briefly review it here. Since the distribution function decays exponentially, we truncate the integration domain from \({\mathbb {R}}\) to one or two bounded intervals, by taking the intercept of P(v) at a certain value, such that P(v) is cut somewhere sufficiently low below its peak values. The truncation procedure is done by considering two possible scenarios separately. Let \(P(v) = \sum \limits _{i=0}^4 \beta _i v^i\),

  1. 1.

    If P(v) has only one peak, which we denote as \(v_1\), the integration interval is decided as \([c_1, c_2]\), where \(c_1, c_2\) are the two roots of

    $$\begin{aligned} P(v) - (P(v_1)-c) = 0, \end{aligned}$$
    (C.1)

    with c a sufficiently large constant.

  2. 2.

    If P(v) has two peaks \(v_1\) and \(v_2\), we solve

    $$\begin{aligned} P(v) - (P(v_1)-c) = 0,\quad P(v) -(P(v_2)-c) = 0, \end{aligned}$$
    (C.2)

    to obtain the two intervals as \([c_1,c_2]\) and \([c_3,c_4]\). If \(c_2>c_3\), then the interval \([c_1,c_4]\) is used for computation.

The value of c is taken according to experience, such that it is sufficiently large. In our computation, it is usually enough to take \(c = 50\). There are two additional special cases which we treat separately:

  1. 1.

    If \(|\beta _4| < 10^{-16}\) and \(\beta _2 < 0\), the distribution function is almost Maxwellian. In this case, we could directly specify the integration interval, as the position of the peak is simply \(-\frac{\beta _1}{2 \beta _2}\). Considering that the smaller the value of \(|\beta _2|\), the larger the integration interval needs to be, we take the length of the truncated integration interval to be \(4\sqrt{-\frac{50}{\beta _2}}\).

  2. 2.

    If \(\beta _4 < -50\), the moments are close to the boundary of the realizable region. In this case, c needs to be larger as the peaks are very sharp. Considering that the larger \(|\beta _4|\) is, the sharper the peaks are, for moments near the boundary we modify the value of c to be \(c = 50\sqrt{-\frac{\beta _4}{10}}\).

Once the integration interval is determined, we use Gauss–Chebyshev quadrature to calculate the integral. In our numerical examples, 400 quadrature points are used to evaluate each integration. If there are two intervals, the quadrature points are divided between the two intervals proportional to the interval lengths.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Song, P. & Wang, Y. A Hybrid Moment Method for Multi-scale Kinetic Equations Based on Maximum Entropy Principle. J Sci Comput 89, 35 (2021). https://doi.org/10.1007/s10915-021-01639-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01639-0

Keywords

Navigation