Skip to main content
Log in

Positivity-Preserving Well-Balanced Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Methods for the Shallow Water Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop well-balanced arbitrary Lagrangian–Eulerian discontinuous Galerkin (ALE-DG) methods for the shallow water equations, which preserve not only the still water equilibrium but also the moving water equilibrium. Based on the time-dependent linear affine mapping, the ALE-DG method for conservation laws maintains almost all mathematical properties of DG methods on static grids, such as conservation, geometric conservation law (GCL), entropy stability. The main difficulty to obtain the well-balanced property of the ALE-DG method for shallow water equations is that the grid movement and usual time discretization may destroy the equilibrium. By adopting the GCL preserving Runge–Kutta methods and the techniques of well-balanced DG schemes on static grids, we successfully construct the high order well-balanced ALE-DG schemes for the shallow water equations with still and moving water equilibria. Meanwhile, the ALE-DG schemes can also preserve the positivity property at the same time. Numerical experiments in different circumstances are provided to illustrate the well-balanced property, positivity preservation and high order accuracy of these schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Arpaia, L., Ricchiuto, M.: R-adaptation for Shallow Water flows: conservation, well balancedness, efficiency. Comput. Fluids 160, 175–203 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Arpaia, L., Ricchiuto, M.: Well balanced residual distribution for the ALE spherical shallow water equations on moving adaptive meshes. J. Comput. Phys. 405, 109173 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Audusse, E., Bouchut, F., Bristeau, M.-O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Berthon, C., Marche, F.: A positive preserving high order VFRoe scheme for shallow water equations: a class of relaxation schemes. SIAM J. Sci. Comput. 30, 2587–2612 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bokhove, O.: Flooding and drying in discontinuous Galerkin finite-element discretizations of shallow-water equations. Part: 1 one dimension. J. Sci. Comput. 22.1–3, 47–82 (2005)

  6. Bollermann, A., Noelle, S., Lukáčová-Medvid’ová, M.: Finite volume evolution Galerkin methods for the shallow water equations with dry beds. Commun. Comput. Phys. 10(2), 371–404 (2011)

  7. Bollermann, A., Chen, G., Kurganov, A.: A well-balanced reconstruction of wet/dry fronts for the shallow water equations. J. Sci. Comput. 56(2), 267–290 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Bouchut, F., Morales, T.: A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. Anal. 48, 1733–1758 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Brufau, P., Vázquez-Cendón, M.E., García-Navarro, P.: A numerical model for the flooding and drying of irregular domains. Int. J. Numer. Methods Fluids 39, 247–275 (2002)

    MATH  Google Scholar 

  10. Castro, M.J., Pardo Milanés, A., Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17(12), 2055–2113 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Chen, G., Noelle, S.: A new hydrostatic reconstruction scheme based on subcell reconstructions. SIAM J. Numer. Anal. 55(2), 758–784 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. ESAIM Math. Modell. Numer. Anal. 25, 337–361 (1991)

  16. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    MathSciNet  MATH  Google Scholar 

  17. Duran, A., Marche, F.: Recent advances on the discontinuous Galerkin method for shallow water equations with topography source terms. Compute. Fluids 101, 88–104 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge-Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58, 1–25 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Fu, P., Schnücke, G., Xia, Y.: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws on moving simplex meshes. Math. Comput. 88, 2221–2255 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Jin, S., Wen, X.: Two interface type numerical methods for computing hyperbolic systems with geometrical source terms having concentrations. SIAM J. Sci. Comput. 26, 2079–2101 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Kesserwani, G., Liang, Q.: Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying. Comput. Fluids 39, 2040–2050 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Klingenberg, C., Schnücke, G., Xia, Y.: Arbitrary Lagrangian-Eulerian discontinuous Galerkin method for conservation laws: analysis and application in one dimension. Math. Comput. 86, 1203–1232 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Klingenberg, C., Puppo, G., Semplice, M.: Arbitrary order finite volume well-balanced schemes for the Euler equations with gravity. SIAM J. Sci. Comput. 41(2), A695–A721 (2019)

    MathSciNet  MATH  Google Scholar 

  25. LeVeque, R.J.: Balancing source terms and flux gradients on high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys 146, 346–365 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Nielsen, C., Apelt, C.: Parameters affecting the performance of wetting and drying in a two-dimensional finite element long wave hydrodynamic model. J. Hydraul. Eng. 129, 628–636 (2003)

    Google Scholar 

  27. Noelle, S., Xing, Y., Shu, C.-W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226, 29–58 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Rhebergen, S., Bokhove, O., Van der Vegt, J.J.W.: Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations. J. Comput. Phys. 227, 1887–1922 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Rhebergen, S.: Well-balanced R-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations. Oxford Univ. Math. Inst. Tech. Rep. 1757 (2013)

  30. Russo, G.: A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39, 135–159 (2000)

    MathSciNet  Google Scholar 

  31. Russo, G.: Central schemes for conservation laws with application to shallow water equations, pp. 225–246. Milano, Trends and Applications of Mathematics to Mechanics. Springer (2005)

  32. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  33. Shu, C.-W.: High order WENO and DG methods for time-dependent convection-dominated PDEs: a brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Vázquez-Cendón, M.E.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148, 497–526 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Xing, Y.: Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium. J. Comput. Phys. 257, 536–553 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Xing, Y., Shu, C.-W.: High-order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms. J. Sci. Comput. 27, 477–494 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Xing, Y., Shu, C.-W.: A new approach of high order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. Commun. Comput. Phys. 214, 567–598 (2006)

    MATH  Google Scholar 

  40. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Google Scholar 

  41. Xing, Y., Shu, C.-W., Noelle, S.: On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations. J. Sci. Comput. 48, 339–349 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, M., Huang, W., Qiu, J.: A high-order well-balanced positivity-preserving moving mesh DG method for the shallow water equations with non-flat bottom topography. J. Sci. Comput. 87(3), 1–43 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, X., Xia, Y., Shu, C.-W.: Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci. Comput. 50, 29–62 (2012)

    MathSciNet  MATH  Google Scholar 

  44. Zhou, F., Chen, G., Noelle, S., Guo, H.: A well-balanced stable generalized Riemann problem scheme for shallow water equations using adaptive moving unstructured triangular meshes. Int. J. Numer. Methods Fluids 73(3), 266–283 (2013)

    MathSciNet  MATH  Google Scholar 

  45. Zhou, F., Chen, G., Huang, Y., Yang, J.Z., Feng, H.: An adaptive moving finite volume scheme for modeling flood inundation over dry and complex topography. Water Resour. Res. 49(4), 1914–1928 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

W. Zhang: Research supported by National Numerical Windtunnel Project NNW2019ZT4-B08; Y. Xia: Research supported by Science Challenge Project TZZT2019-A2.3, NSFC Grant No. 11871449; Y. Xu: Research supported by National Numerical Windtunnel Project NNW2019ZT4-B08, NSFC Grant No. 12071455, 11722112.

Appendices

Proofs for the Still Water Equilibrium Schemes

In order to show the main idea of the proof, we only show the proofs of the properties in Sect. 3 in one dimensional case. The two-dimensional proofs are similar and we omit the detail for simplicity. In one dimensional case, the flux term is defined by

$$\begin{aligned} {\varvec{G}}(\omega ,{\varvec{v}})={\varvec{f}}({\varvec{v}})-\omega {\varvec{v}},\text { with }{\varvec{f}}({\varvec{v}})=\left( \begin{matrix} hu\\ \displaystyle \frac{(hu)^2}{\eta -b}+\frac{1}{2}g(\eta -b)^2 \end{matrix}\right) . \end{aligned}$$

1.1 Proof of Lemma 3.1 for Scheme (3.12)

We first simplify the numerical flux \(\hat{{\varvec{G}}}^{l,r}\). We denote the two components of the numerical flux \(\hat{{\varvec{G}}}\) by \(\hat{{\varvec{G}}}^{[1]}\) and \(\hat{{\varvec{G}}}^{[2]}\).

We write the specific form of \(\hat{{\varvec{G}}}^{[1],l}\) as follows

$$\begin{aligned} \hat{{\varvec{G}}}^{[1],l}&=\hat{{\varvec{G}}}^{[1]}(\omega ,{\varvec{v}}^{*,-},{\varvec{v}}^{*,+})+\frac{1}{2}\left( (\omega +\alpha )(\eta ^{*,+}-\eta ^+)+(\omega -\alpha )(\eta ^{*,-}-\eta ^-)\right) \end{aligned}$$
(A.1)
$$\begin{aligned}&=\frac{1}{2}\left( hu^--\omega \eta ^{*,-}+hu^--\omega \eta ^{*,+}-\alpha (\eta ^{*,+}-\eta ^{*,-})\right. \nonumber \\&\left. \quad +(\omega +\alpha )(\eta ^{*,+}-\eta ^+)+(\omega -\alpha )(\eta ^{*,-}-\eta ^-)\right) \nonumber \\&=\frac{1}{2}\left( hu^--\omega \eta ^{-}+hu^--\omega \eta ^{+}-\alpha (\eta ^{+}-\eta ^{-}\right) =\hat{{\varvec{G}}}^{[1]}(\omega ,{\varvec{v}}^-,{\varvec{v}}^+). \end{aligned}$$
(A.2)

Similarly we have

$$\begin{aligned} \hat{{\varvec{G}}}^{[1],r}=\hat{{\varvec{G}}}^{[1]}(\omega ,{\varvec{v}}^-,{\varvec{v}}^+)=\hat{{\varvec{G}}}^{[1],r}. \end{aligned}$$
(A.3)

Here without causing conflict, we have omitted the subscript \(j+\frac{1}{2}\) and we note that we don’t use the assumption of still water equilibrium.

Next, since \({\varvec{v}}\) equals the still water equilibrium, i.e. \(h(x)+b(x)=\text{ constant }\) and \(hu(x)=0\). We have \(\eta _{j+\frac{1}{2}}^+=\eta _{j+\frac{1}{2}}^-\) and \((hu)_{j+\frac{1}{2}}^\pm =0\). For the numerical flux of the first equation, we use (A.3) to get

$$\begin{aligned} \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1],l}=\hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1],r}=\hat{{\varvec{G}}}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^-,{\varvec{v}}_{j+\frac{1}{2}}^+\right) ={\varvec{G}}^{[1]}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^-\right) . \end{aligned}$$
(A.4)

For the numerical flux of the second equation, we have

$$\begin{aligned} \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[2],l}&=\hat{{\varvec{G}}}^{[2]}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^{*,-},{\varvec{v}}_{j+\frac{1}{2}}^{*,+}\right) +\frac{g}{2}\left( \eta _{j+\frac{1}{2}}^--b_{j+\frac{1}{2}}^-\right) ^2-\frac{g}{2}\left( h_{j+\frac{1}{2}}^{*,-}\right) ^2\nonumber \\&=\frac{1}{2}\left( {\varvec{G}}(\omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^{*,-})+{\varvec{G}}(\omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^{*,+})\right) +\frac{g}{2}\left( \eta _{j+\frac{1}{2}}^--b_{j+\frac{1}{2}}^-\right) ^2-\frac{g}{2}\left( h_{j+\frac{1}{2}}^{*,-}\right) ^2\nonumber \\&=\frac{1}{2}\left( \frac{g}{2}\left( \eta _{j+\frac{1}{2}}^{*,-}-b_{j+\frac{1}{2}}^-\right) ^2+\frac{g}{2}\left( \eta _{j+\frac{1}{2}}^{*,+}-b_{j+\frac{1}{2}}^+\right) ^2\right) +\frac{g}{2}\left( \eta _{j+\frac{1}{2}}^--b_{j+\frac{1}{2}}^-\right) ^2-\frac{g}{2}\left( h_{j+\frac{1}{2}}^{*,-}\right) ^2\nonumber \\&=\frac{g}{2}\left( h_{j+\frac{1}{2}}^{*,-}\right) ^2+\frac{g}{2}\left( \eta _{j+\frac{1}{2}}^--b_{j+\frac{1}{2}}^-\right) ^2-\frac{g}{2}\left( h_{j+\frac{1}{2}}^{*,-}\right) ^2\nonumber \\&=\frac{g}{2}\left( \eta _{j+\frac{1}{2}}^--b_{j+\frac{1}{2}}^-\right) ^2={\varvec{G}}^{[2]}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^-\right) . \end{aligned}$$
(A.5)

Here we use the fact that \(hu_{j+\frac{1}{2}}^-=hu_{j+\frac{1}{2}}^+=0\). Similarly, we have

$$\begin{aligned} \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[2],r}={\varvec{G}}^{[2]}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^+\right) . \end{aligned}$$
(A.6)

So we combine the results (A.2)–(A.6) and have

$$\begin{aligned} \begin{aligned} \hat{{\varvec{G}}}_{j+\frac{1}{2}}^l={\varvec{G}}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^-\right) =\left( \begin{matrix} \omega _{j+\frac{1}{2}}\eta _{j+\frac{1}{2}}^-\\ \frac{g}{2}\left( \eta _{j+\frac{1}{2}}^--b_{j+\frac{1}{2}}^-\right) ^2 \end{matrix} \right) ,\\ \hat{{\varvec{G}}}_{j-\frac{1}{2}}^r={\varvec{G}}\left( \omega _{j-\frac{1}{2}},{\varvec{v}}_{j-\frac{1}{2}}^+\right) =\left( \begin{matrix} \omega _{j-\frac{1}{2}}\eta _{j-\frac{1}{2}}^+\\ \frac{g}{2}\left( \eta _{j-\frac{1}{2}}^+-b_{j-\frac{1}{2}}^+\right) ^2 \end{matrix} \right) . \end{aligned} \end{aligned}$$

Thus we have

$$\begin{aligned} \begin{aligned} {\mathcal {L}}^h_j\left( \omega ,{\varvec{v}},\varvec{\phi },t\right) =&\int \limits _{K_j(t)}\left( \begin{matrix} -\omega \eta \\ \frac{g}{2}(\eta -b)^2 \end{matrix} \right) \cdot \varvec{\phi }_x\mathrm {d} x-\left( \begin{matrix} \omega _{j+\frac{1}{2}}\eta _{j+\frac{1}{2}}^-\\ \frac{g}{2}(\eta _{j+\frac{1}{2}}^--b_{j+\frac{1}{2}}^-)^2 \end{matrix} \right) \cdot \varvec{\phi }_{j+\frac{1}{2}}^-\\&+\left( \begin{matrix} \omega _{j-\frac{1}{2}}\eta _{j-\frac{1}{2}}^+\\ \frac{g}{2}(\eta _{j-\frac{1}{2}}^+-b_{j-\frac{1}{2}}^+)^2 \end{matrix} \right) \cdot \varvec{\phi }_{j-\frac{1}{2}}^++\int \limits _{K_j(t)}\left( \begin{matrix} 0\\ -g(\eta -b)b_x \end{matrix} \right) \cdot \varvec{\phi }\mathrm {d} x\\ =&-\int \limits _{K_j(t)}\partial _x\left( \begin{matrix} -\omega \eta \\ \frac{g}{2}(\eta -b)^2 \end{matrix} \right) \cdot \varvec{\phi }\mathrm {d} x+\int \limits _{K_j(t)}\left( \begin{matrix} 0\\ -g(\eta -b)b_x \end{matrix} \right) \cdot \varvec{\phi }\mathrm {d} x\\ =&\int \limits _{K_j(t)}\partial _x\left( \begin{matrix} \omega \eta \\ 0 \end{matrix} \right) \cdot \varvec{\phi }\mathrm {d} x\\ =&\int \limits _{K_j(t)}(\omega {\varvec{v}})_x \cdot \varvec{\phi }\mathrm {d} x. \end{aligned} \end{aligned}$$

where we use the integration by parts to cancel the boundary interface terms. This finishes the proof.

1.2 Proof of Lemma 3.1 for Scheme (3.15)

Since \({\varvec{v}}\) equals the still water equilibrium, i.e. \({\varvec{v}}\) is constant vector, we have

$$\begin{aligned} {\varvec{v}}_{j+\frac{1}{2}}^-={\varvec{v}}_{j+\frac{1}{2}}^+. \end{aligned}$$

Because \(\widehat{{\varvec{G}}}\) is a monotone flux, then we have

$$\begin{aligned} \widehat{{\varvec{G}}}_{j+\frac{1}{2}}&=\frac{1}{2}\left( {\varvec{G}}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^-\right) +{\varvec{G}}\left( \omega _{j+\frac{1}{2}},{\varvec{v}}_{j+\frac{1}{2}}^+\right) \right) \nonumber \\&=\frac{1}{2}\left( {\varvec{f}}\left( {\varvec{v}}_{j+\frac{1}{2}}^-\right) +{\varvec{f}}\left( {\varvec{v}}_{j+\frac{1}{2}}^+\right) \right) -\omega _{j+\frac{1}{2}}{\varvec{v}}_{j+\frac{1}{2}}^-. \end{aligned}$$
(A.7)

Similarly we have

$$\begin{aligned} \widehat{{\varvec{G}}}_{j-\frac{1}{2}}=\frac{1}{2}\left( {\varvec{f}}\left( {\varvec{v}}_{j-\frac{1}{2}}^-\right) +{\varvec{f}}\left( {\varvec{v}}_{j-\frac{1}{2}}^+\right) \right) -\omega _{j-\frac{1}{2}}{\varvec{v}}_{j-\frac{1}{2}}^+. \end{aligned}$$
(A.8)

Then we can compute that

$$\begin{aligned}&{\mathcal {L}}^s_j\left( \omega ,{\varvec{v}},\varvec{\phi },t\right) \\&\quad =\int \limits _{K_j(t)}-\omega {\varvec{v}} \cdot \varvec{\phi }_x\mathrm {d} x+\omega _{j+\frac{1}{2}}{\varvec{v}}_{j+\frac{1}{2}}^- \cdot \varvec{\phi }_{j+\frac{1}{2}}^--\omega _{j-\frac{1}{2}}{\varvec{v}}_{j-\frac{1}{2}}^+ \cdot \varvec{\phi }_{j-\frac{1}{2}}^+\\&\qquad +\int \limits _{K_j(t)}{\varvec{f}}({\varvec{v}}) \cdot \varvec{\phi }_x\mathrm {d} x -\frac{1}{2}\left( {\varvec{f}}\left( {\varvec{v}}_{j-\frac{1}{2}}^-\right) \right. \\&\left. \qquad +{\varvec{f}}\left( {\varvec{v}}_{j-\frac{1}{2}}^+\right) \right) \cdot \varvec{\phi }_{j+\frac{1}{2}}^-+\frac{1}{2}\left( {\varvec{f}}\left( {\varvec{v}}_{j-\frac{1}{2}}^-\right) +{\varvec{f}}\left( {\varvec{v}}_{j-\frac{1}{2}}^+\right) \right) \cdot \varvec{\phi }_{j-\frac{1}{2}}^++s_j\\&\quad =\int \limits _{K_j(t)}(\omega {\varvec{v}})_x \cdot \varvec{\phi }\mathrm {d} x+\int \limits _{K_j(t)}\frac{1}{2}g(\eta -b)^2\,\psi _x\mathrm {d} x\\&\qquad -\frac{g(\eta -b_{j+\frac{1}{2}}^-)^2+g\left( \eta -b_{j+\frac{1}{2}}^+\right) ^2}{4} \psi _{j+\frac{1}{2}}^-+\frac{g\left( \eta -b_{j+\frac{1}{2}}^-\right) ^2+g\left( \eta -b_{j+\frac{1}{2}}^+\right) ^2}{4} \psi _{j-\frac{1}{2}}^++s_j\\&\quad =\int \limits _{K_j(t)}(\omega {\varvec{v}})_x \cdot \varvec{\phi }\mathrm {d} x+\int \limits _{K_j(t)}\left( \frac{1}{2}g\eta ^2+\frac{1}{2}gb^2-g\eta b\right) \psi _x\mathrm {d} x\\&\qquad -\left( \frac{1}{2}g\eta ^2+\frac{1}{4}g\left( b_{j+\frac{1}{2}}^-\right) ^2+\frac{1}{4}g\left( b_{j+\frac{1}{2}}^+\right) ^2-\frac{1}{2}g\eta \,b_{j+\frac{1}{2}}^--\frac{1}{2}g\eta \,b_{j+\frac{1}{2}}^+\right) \psi _{j+\frac{1}{2}}^-\\&\qquad +\left( \frac{1}{2}g\eta ^2+\frac{1}{4}g\left( b_{j-\frac{1}{2}}^-\right) ^2+\frac{1}{4}g\left( b_{j-\frac{1}{2}}^+\right) ^2-\frac{1}{2}g\eta \,b_{j-\frac{1}{2}}^--\frac{1}{2}g\eta \,b_{j-\frac{1}{2}}^+\right) \psi _{j-\frac{1}{2}}^+\\&\qquad +\int \limits _{K_j(t)}\left( -\frac{1}{2}gb^2+g\eta b\right) \psi _x\mathrm {d} x\\&\qquad -\left( -\frac{1}{4}g\left( b_{j+\frac{1}{2}}^-\right) ^2-\frac{1}{4}g\left( b_{j+\frac{1}{2}}^+\right) ^2+\frac{1}{2}g\eta \,b_{j+\frac{1}{2}}^-+\frac{1}{2}g\eta \,b_{j+\frac{1}{2}}^+\right) \psi _{j+\frac{1}{2}}^-\\&\qquad +\left( -\frac{1}{4}g\left( b_{j-\frac{1}{2}}^-\right) ^2-\frac{1}{4}g\left( b_{j-\frac{1}{2}}^+\right) ^2+\frac{1}{2}g\eta \,b_{j-\frac{1}{2}}^-+\frac{1}{2}g\eta \,b_{j-\frac{1}{2}}^+\right) \psi _{j-\frac{1}{2}}^+\\&\quad =\int \limits _{K_j(t)}(\omega {\varvec{v}})_x \cdot \varvec{\phi }\mathrm {d}x+\int \limits _{K_j(t)}\frac{1}{2}g\eta ^2 \psi _x\mathrm {d} x-\frac{1}{2}g\eta ^2\psi _{j+\frac{1}{2}}^-+\frac{1}{2}g\eta ^2\psi _{j-\frac{1}{2}}^+\\&\quad =\int \limits _{K_j(t)}(\omega {\varvec{v}})_x \cdot \varvec{\phi }\mathrm {d}x+\int \limits _{K_j(t)}\left( \frac{1}{2}g\eta ^2\right) _x\psi \mathrm {d}x=\int \limits _{K_j(t)}(\omega {\varvec{v}})_x \cdot \varvec{\phi }\mathrm {d} x. \end{aligned}$$

The second equality is due to \(hu=0\) and \(\eta =\text{ constant }\). The sixth equality uses the fact \(\eta =\text{ constant }\).

1.3 Proof of Proposition 3.2

It is sufficient and necessary to prove that if \({\varvec{v}}\) are the still water equilibrium at time \(t=0\), i.e.

$$\begin{aligned} \eta ^0(x)=\text{ constant },\quad \text{ and }\quad (hu)^0(x)=0, \end{aligned}$$
(A.9)

then the numerical solution at any time \(t^n\) has to be

$$\begin{aligned} \eta ^n(x)=\text{ constant },\quad \text{ and }\quad (hu)^n(x)=0. \end{aligned}$$
(A.10)

Now we will use induction to prove the proposition.

Basic Step: Suppose that the initial data \({\varvec{v}}^0\) are the still water equilibrium, i.e. \(\eta ^0(x)=\text{ constant }\) and \((hu)^0(x)=0\). So \({\varvec{v}}^0\) is true.

Inductive Step: Now we assume the truth of \({\varvec{v}}^k\), for some \(k\in {\mathbb {N}}\) —that is, we assume that

$$\begin{aligned} \eta ^k(x)=\text{ constant },\quad (hu)^k(x)=0, \end{aligned}$$
(A.11)

is a true state. From this assumption we want to deduce that

$$\begin{aligned} \eta ^{k+1}(x)=\text{ constant },\quad (hu)^{k+1}(x)=0. \end{aligned}$$
(A.12)

In each time step, we use the Euler forward scheme (3.20). For both two schemes, we can use Lemma 3.1 to simplify the equation in (3.20) and get

$$\begin{aligned} \begin{aligned} \int \limits _{K_j^{k+1}}{\varvec{v}}^{k+1}\cdot \varvec{\phi }^{k+1}\mathrm {d} x=&\int \limits _{K_j^k}{\varvec{v}}^k\cdot \varvec{\phi }^k\mathrm {d} x+\Delta t\int \limits _{K_j^k}(\omega ^k{\varvec{v}}^k)_x \cdot \varvec{\phi }^k\mathrm {d} x\\ =&{\varvec{v}}^k\cdot \,\left( \int \limits _{K_j^k}\varvec{\phi }^k\mathrm {d} x+\Delta t\int \limits _{K_j^k}(\omega ^k)_x\varvec{\phi }^k\mathrm {d} x\right) \\ =&{\varvec{v}}^k\cdot \,\int \limits _{K_j^{k+1}}\varvec{\phi }^{k+1}\mathrm {d} x\\ =&\int \limits _{K_j^{k+1}}{\varvec{v}}^k\cdot \,\varvec{\phi }^{k+1}\mathrm {d} x, \end{aligned} \end{aligned}$$
(A.13)

where the second equality holds since \({\varvec{v}}^k\) is a constant vector and the third equality is due to the dGCL in [23].

So we prove that \({\varvec{v}}^{k+1}={\varvec{v}}^k\), which is also the still water equilibrium, i.e.

$$\begin{aligned} \eta ^{k+1}=\text{ constant }, \quad (hu)^{k+1}=0. \end{aligned}$$

This claim means that the numerical solution \({\varvec{v}}^n\) for \(n\in {\mathbb {N}}\) is in the case of still water equilibrium, thus the fully discrete schemes are well-balanced.

1.4 Proof of Theorem 3.4

According to the results in (A.2) and (A.3), we simplify the numerical flux in (3.12) to get that the numerical scheme for the first equation in (3.12) and (3.15) are the same. Then according to the first equation of (3.12) or (3.15), we write the equation satisfied by the cell average of surface level \(\eta \):

$$\begin{aligned} \frac{\Delta _j^{n+1}}{\Delta _j^n}{\bar{\eta }}_j^{n+1}={\bar{\eta }}_j^n-\lambda \left( \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1]}+\hat{{\varvec{G}}}_{j-\frac{1}{2}}^{[1]}\right) . \end{aligned}$$
(A.14)

where \(\hat{{\varvec{G}}}^{[1]}\) denote the first component of \(\hat{{\varvec{G}}}\):

$$\begin{aligned} \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1]}=\frac{1}{2}\left( (hu)_{j+\frac{1}{2}}^{n,+}-\omega _{j+\frac{1}{2}}\eta _{j+\frac{1}{2}}^{n,+}+(hu)_{j+\frac{1}{2}}^{n,-}-\omega _{j+\frac{1}{2}}\eta _{j+\frac{1}{2}}^{n,-}-\alpha (\eta _{j+\frac{1}{2}}^{n,+}-\eta _{j+\frac{1}{2}}^{n,-})\right) ,\nonumber \\ \end{aligned}$$
(A.15)

and \(\lambda =\frac{\Delta t}{\Delta _j^n}\). Moreover, we write out the equation satisfied by the cell average of bottom topography b:

$$\begin{aligned} \frac{\Delta _j^{n+1}}{\Delta _j^n}{\bar{b}}_j^{n+1}={\bar{b}}_j^n+\lambda \left( \widehat{\omega b}_{j+\frac{1}{2}}-\widehat{\omega b}_{j-\frac{1}{2}}\right) . \end{aligned}$$
(A.16)

We denote \(\eta _j-b_j\) by \(h_j\). We firstly decompose \({\bar{h}}_j^{n+1}\) in (A.14) into two parts:

$$\begin{aligned} \frac{\Delta _j^{n+1}}{\Delta _j^n}{\bar{h}}_j^{n+1}=W_1+W_2, \end{aligned}$$
(A.17)

with

$$\begin{aligned} W_1=&{\bar{b}}_j^n-\frac{\Delta _j^{n+1}}{\Delta _j^n}{\bar{b}}_j^{n+1}+\lambda \left( \widehat{\omega b}_{j+\frac{1}{2}}-\widehat{\omega b}_{j-\frac{1}{2}}\right) ,\\ W_2=&{\bar{h}}_j^n-\lambda \left( \left( \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1]}+\widehat{\omega b}_{j+\frac{1}{2}}\right) -\left( \hat{{\varvec{G}}}_{j-\frac{1}{2}}^{[1]}+\widehat{\omega b}_{j-\frac{1}{2}}\right) \right) . \end{aligned}$$

We note that \(W_1=0\). This is because the definition of b in (A.16). So we only need to prove \(W_2>0\).

Since we use the Lax-Friedrichs flux in this paper, we first simplify \(\hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1]}+\widehat{\omega b}_{j+\frac{1}{2}}\) by combining (A.15) and (3.22):

$$\begin{aligned} \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1]}+\widehat{\omega b}_{j+\frac{1}{2}}&=\frac{1}{2}\left( (hu)_{j+\frac{1}{2}}^{n,+}-\omega _{j+\frac{1}{2}}h_{j+\frac{1}{2}}^{n,+}+(hu)_{j+\frac{1}{2}}^{n,-}-\omega _{j+\frac{1}{2}}h_{j+\frac{1}{2}}^{n,-}-\alpha (h_{j+\frac{1}{2}}^{n,+}-h_{j+\frac{1}{2}}^{n,-})\right) \\&=\frac{1}{2}\left( \left( u_{j+\frac{1}{2}}^{n,+}-\omega _{j+\frac{1}{2}}-\alpha \right) h_{j+\frac{1}{2}}^{n,+}+\left( u_{j+\frac{1}{2}}^{n,-}-\omega _{j+\frac{1}{2}}+\alpha \right) h_{j+\frac{1}{2}}^{n,-}\right) \\&<\frac{1}{2}\left( \left( \alpha -\alpha \right) h_{j+\frac{1}{2}}^{n,+}+\left( \alpha +\alpha \right) h_{j+\frac{1}{2}}^{n,-}\right) =\alpha h_{j+\frac{1}{2}}^{n,-}. \end{aligned}$$

The first equality is due to \(\hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1]}\) and \(\widehat{\omega b}_{j+\frac{1}{2}}\) use the same \(\alpha \). The inequality is due to the definition of \(\alpha \):

$$\begin{aligned} -\alpha<u_{j+\frac{1}{2}}^{n,+}-\omega _{j+\frac{1}{2}}<\alpha . \end{aligned}$$

Similarly we have

$$\begin{aligned} \hat{{\varvec{G}}}_{j-\frac{1}{2}}^{[1]}+\widehat{\omega b}_{j-\frac{1}{2}}>-\alpha h_{j-\frac{1}{2}}^{n,+}. \end{aligned}$$

So we use the Gauss quadrature rule and above inequalities to get

$$\begin{aligned} W_2=&\sum _{\nu =1}^L{\hat{\omega }}_\nu h_j^n({\hat{x}}_j^{(\nu )})-\lambda \left( \left( \hat{{\varvec{G}}}_{j+\frac{1}{2}}^{[1]}+\widehat{\omega b}_{j+\frac{1}{2}}\right) -\left( \hat{{\varvec{G}}}_{j-\frac{1}{2}}^{[1]}+\widehat{\omega b}_{j-\frac{1}{2}}\right) \right) \\>&\sum _{\nu =1}^{L}{\hat{\omega }}_\nu h_j^n({\hat{x}}_j^{(\nu )})-\alpha \lambda h_{j-\frac{1}{2}}^{n,+}-\alpha \lambda h_{j+\frac{1}{2}}^{n,-}\\ =&\sum _{\nu =2}^{L-1}{\hat{\omega }}_\nu h_j^n({\hat{x}}_j^{(\nu )})+\left( {\hat{\omega }}_1-\alpha \lambda \right) h_{j-\frac{1}{2}}^{n,+}-\left( {\hat{\omega }}_L-\alpha \lambda \right) h_{j+\frac{1}{2}}^{n,-}\\ >&0. \end{aligned}$$

Notice that \({\hat{\omega }}_1={\hat{\omega }}_L\) and \(\lambda <\frac{1}{{\hat{\alpha }}_0}=\frac{{\hat{\omega }}_1}{\alpha }\). Combined with the assumption \(h(x)>0\), for \(x\in {\mathbb {S}}_{K_j^n}\), we proved that \(W_2>0\).

Proofs for the Moving Water Equilibrium Scheme

1.1 Proof of Lemma 4.2

We first prove that \(\hat{{\varvec{g}}}(\omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{*,-},{\varvec{u}}_{j+\frac{1}{2}}^{*,+})={\varvec{g}}(\omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{d,-})={\varvec{g}}(\omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{d,-})\). Under such assumption, we have

$$\begin{aligned} {\varvec{u}}^r=0,\quad {\varvec{u}}^*={\varvec{u}}^d. \end{aligned}$$
(B.1)

With stationary shocks of \({\varvec{u}}^d\) and the assumption \(\omega _{j+\frac{1}{2}}=0\) at the shock, we can calculate that

$$\begin{aligned} \hat{{\varvec{g}}}\left( \omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{*,-},{\varvec{u}}_{j+\frac{1}{2}}^{*,+}\right) =\hat{{\varvec{g}}}\left( \omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{d,-},{\varvec{u}}_{j+\frac{1}{2}}^{d,+}\right) ={\varvec{g}}\left( \omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{d,-}\right) ={\varvec{g}}\left( \omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{d,-}\right) .\nonumber \\ \end{aligned}$$
(B.2)

The first equality is due to (B.1). The second and the third equality is due to \(\omega _{j+\frac{1}{2}}=0\), the property of Roe’s flux that it can exactly solve the Riemann problem [35], and the shock at point \(x_{j+\frac{1}{2}}\) is a stationary shock.

With the continuity of \({\varvec{u}}^d\), we have \({\varvec{u}}_{j+\frac{1}{2}}^{*,\pm }={\varvec{u}}_{j+\frac{1}{2}}^{d,\pm }\) and we have the same conclusion with (B.2) according to the property of the Lax-Friedrichs flux. This means that for all the numerical fluxes,

$$\begin{aligned} \hat{{\varvec{g}}}_{j+\frac{1}{2}}^l={\varvec{f}}({\varvec{u}}_{j+\frac{1}{2}}^-)-\omega _{j+\frac{1}{2}}{\varvec{u}}_{j+\frac{1}{2}}^{d,-}\quad \text{ and }\quad \hat{{\varvec{g}}}_{j-\frac{1}{2}}^r={\varvec{f}}({\varvec{u}}_{j-\frac{1}{2}}^+)-\omega _{j-\frac{1}{2}}{\varvec{u}}_{j-\frac{1}{2}}^{d,+}. \end{aligned}$$

Now, we have

$$\begin{aligned} \begin{aligned} {\mathcal {L}}^m_j(\omega ,{\varvec{u}},\varvec{\phi },t)=&\int \limits _{K_j(t)}{\varvec{g}}(\omega ,{\varvec{u}})\cdot \varvec{\phi }_x\mathrm {d}x-\left( {\varvec{f}}({\varvec{u}}_{j+\frac{1}{2}}^-)-\omega _{j+\frac{1}{2}}{\varvec{u}}_{j+\frac{1}{2}}^{d,-}\right) \cdot \varvec{\phi }_{j+\frac{1}{2}}^-\\&+\left( {\varvec{f}}({\varvec{u}}_{j-\frac{1}{2}}^+)-\omega _{j-\frac{1}{2}}{\varvec{u}}_{j-\frac{1}{2}}^{d,+}\right) \cdot \varvec{\phi }_{j-\frac{1}{2}}^+-\int \limits _{K_j(t)}{\varvec{f}}({\varvec{u}}^e)\cdot \varvec{\phi }_x\mathrm {d}x\\&+f({\varvec{u}}_{j+\frac{1}{2}}^{e,-})\cdot \varvec{\phi }_{j+\frac{1}{2}}^--{\varvec{f}}({\varvec{u}}_{j-\frac{1}{2}}^{e,+})\cdot \varvec{\phi }_{j-\frac{1}{2}}^+\\ =&-\int \limits _{K_j(t)}\omega {\varvec{u}}\cdot \varvec{\phi }_x\mathrm {d}x +\omega _{j+\frac{1}{2}} {\varvec{u}}_{j+\frac{1}{2}}^{d,-} \cdot \varvec{\phi }_{j+\frac{1}{2}}^--\omega _{j-\frac{1}{2}} {\varvec{u}}_{j-\frac{1}{2}}^{d,+} \cdot \varvec{\phi }_{j-\frac{1}{2}}^+. \end{aligned} \end{aligned}$$

This is because of the assumption \({\varvec{u}}={\varvec{u}}^e\) and we finish the proof.

1.2 Proof of Proposition 4.4

Similar to previous proof in Proposition 3.2, we will use induction to prove the proposition.

Basic Step: Suppose that \({\varvec{u}}^d\) is the initial condition. Then we have \({\varvec{u}}^0=P{\varvec{u}}^d\) and \({\varvec{u}}^{e,0}=P{\varvec{u}}^d\), which will lead to \({\varvec{u}}^0={\varvec{u}}^{e,0}\). So \({\varvec{u}}^0\) is true.

Inductive Step: Now we assume the truth of \({\varvec{u}}^k\), for some \(k\in {\mathbb {N}}\) —that is, we assume that \({\varvec{u}}^k={\varvec{u}}^{e,k}\) is a true state. From this assumption we want to deduce that \({\varvec{u}}^{k+1}={\varvec{u}}^{e,k+1}\).

Since \({\varvec{u}}^k={\varvec{u}}^{e,k}\), we have \({\varvec{u}}^{r,k}=0\). Use Lemma 4.2, we have

$$\begin{aligned} {\mathcal {L}}^m_j(\omega ^k,{\varvec{u}}^k,\varvec{\phi }^k,t^k)=\omega ^k_{j+\frac{1}{2}}{\varvec{u}}_{j+\frac{1}{2}}^{d,-}\cdot \varvec{\phi }_{j+\frac{1}{2}}^--\omega ^k_{j-\frac{1}{2}}{\varvec{u}}_{j-\frac{1}{2}}^{d,+}\cdot \varvec{\phi }_{j-\frac{1}{2}}^+-\int \limits _{K_j^k}\omega ^k {\varvec{u}}^{e,k}\cdot (\varvec{\phi }^k)_x\mathrm {d}x.\nonumber \\ \end{aligned}$$
(B.3)

By comparing (4.19) and (4.20), we have

$$\begin{aligned} \int \limits _{K_j^{k+1}}({\varvec{u}}^{k+1}-{\varvec{u}}^{e,k+1})\cdot \varvec{\phi }^{k+1}\mathrm {d}x=0. \end{aligned}$$
(B.4)

This means \({\varvec{u}}^{k+1}={\varvec{u}}^{e,k+1}\). This finishes the proof that for \(n\in {\mathbb {N}}\) the numerical solution \({\varvec{u}}^n\) is in the case of moving water equilibrium, which means our scheme do preserve the moving water equilibrium.

1.3 Proof of Theorem 4.6

Since we use the Lax-Friedrichs numerical flux, we can write the specific form of \(\hat{{\varvec{g}}}_{j+\frac{1}{2}}^{l,[1]}\):

$$\begin{aligned} \hat{{\varvec{g}}}_{j+\frac{1}{2}}^{l,[1]}= & {} \hat{{\varvec{g}}}^{[1]}(\omega _{j+\frac{1}{2}},{\varvec{u}}_{j+\frac{1}{2}}^{*,-},{\varvec{u}}_{j+\frac{1}{2}}^{*,+})\nonumber \\= & {} \frac{1}{2}\left( m_{j+\frac{1}{2}}^{*,+}-\omega _{j+\frac{1}{2}} h_{j+\frac{1}{2}}^{*,+}-\alpha h_{j+\frac{1}{2}}^{*,+}+m_{j+\frac{1}{2}}^{*,-}-\omega _{j+\frac{1}{2}}h_{j+\frac{1}{2}}^{*,-}+\alpha h_{j+\frac{1}{2}}^{*,-}\right) \nonumber \\= & {} \frac{1}{2}\left( \left( u_{j+\frac{1}{2}}^{*,+}-\omega _{j+\frac{1}{2}}-\alpha \right) h_{j+\frac{1}{2}}^{*,+}+\left( u_{j+\frac{1}{2}}^{*,-}-\omega _{j+\frac{1}{2}}+\alpha \right) h_{j+\frac{1}{2}}^{*,-}\right) \nonumber \\< & {} \frac{1}{2}\left( \left( \alpha -\alpha \right) h_{j+\frac{1}{2}}^{*,+}+\left( \alpha +\alpha \right) h_{j+\frac{1}{2}}^{*,-}\right) =\alpha h_{j+\frac{1}{2}}^{*,-}. \end{aligned}$$
(B.5)

The first equality is due to \(m^d=m^e\) is constant, which is same as the proof of mass conservation and the inequality is due the definition of \(\alpha \) in (4.17). Similar we simplify \(\hat{{\varvec{g}}}_{j-\frac{1}{2}}^{r,[1]}\) to get

$$\begin{aligned} \hat{{\varvec{g}}}_{j-\frac{1}{2}}^{r,[1]}>-\alpha h_{j-\frac{1}{2}}^{*,+}. \end{aligned}$$
(B.6)

Now we combine (B.5), (B.6) and Gauss-Lobatto quadrature rule, which introduced in (3.6) to simplify (4.22):

$$\begin{aligned} \frac{\Delta _j^{n+1}}{\Delta _j^n}{\bar{h}}_j^{n+1}&={\bar{h}}_j^n-\lambda \left( \hat{{\varvec{g}}}_{j+\frac{1}{2}}^{l,[1]}-\hat{{\varvec{g}}}_{j-\frac{1}{2}}^{r,[1]}\right)>\sum _{\nu =1}^L{\hat{\omega }}_\nu h_j^n({\hat{x}}_j^{(\nu )})-\alpha \lambda \left( h_{j+\frac{1}{2}}^{*,-}+h_{j-\frac{1}{2}}^{*,+}\right) \\&=\sum _{\nu =2}^{L-1}{\hat{\omega }}_\nu h_j^n({\hat{x}}_j^{(\nu )})+\left( {\hat{\omega }}_1h_{j-\frac{1}{2}}^{n,+}-\alpha \lambda h_{j-\frac{1}{2}}^{*,+}\right) +\left( {\hat{\omega }}_Lh_{j+\frac{1}{2}}^{n,-}-\alpha \lambda h_{j+\frac{1}{2}}^{*,-}\right) >0. \end{aligned}$$

This is because the assumption of the theorem that \(h_j^n({\hat{x}}_j^{(\nu )})>0\) and (4.25):

$$\begin{aligned} 1>{\hat{\alpha }}_0\lambda =\frac{\alpha \lambda }{{\hat{\omega }}_1}\max _{x\in \{x_{j-\frac{1}{2}}^+,x_{j+\frac{1}{2}}^-\}}\frac{h_j^*(x)}{h_j^n(x)}\rightarrow {\hat{\omega }}_Lh_j^n(x)>\alpha \lambda h_j^*(x),\,\text {for }x\in \{x_{j-\frac{1}{2}}^+,x_{j+\frac{1}{2}}^-\},\nonumber \\ \end{aligned}$$
(B.7)

and the assumption of Gauss-Lobatto quadrature rule: \({\hat{x}}_1^{(\nu )}\) and \({\hat{x}}_L^{(\nu )}\) are the cell boundaries of \(K_j^n\) and \({\hat{\omega }}_1={\hat{\omega }}_L\). Now we have proved \({\bar{h}}_j^{n+1}>0\) and finish the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xia, Y. & Xu, Y. Positivity-Preserving Well-Balanced Arbitrary Lagrangian–Eulerian Discontinuous Galerkin Methods for the Shallow Water Equations. J Sci Comput 88, 57 (2021). https://doi.org/10.1007/s10915-021-01578-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01578-w

Keywords

Navigation