Skip to main content
Log in

Conforming, Nonconforming and DG Methods for the Stationary Generalized Burgers-Huxley Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work we address the analysis of the stationary generalized Burgers-Huxley equation (a nonlinear elliptic problem with anomalous advection) and propose conforming, nonconforming and discontinuous Galerkin finite element methods for its numerical approximation. The existence, uniqueness and regularity of weak solutions are discussed in detail using a Faedo-Galerkin approach and fixed-point theory, and a priori error estimates for all three types of numerical schemes are rigorously derived. A set of computational results are presented to show the efficacy of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alinia, N., Zarebnia, M.: A numerical algorithm based on a new kind of tension B-spline function for solving Burgers-Huxley equation. Num. Algorithms 82, 1–22 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Archive of Numerical Software 3, 9–23 (2015)

  3. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  Google Scholar 

  4. Bini, D., Cherubini, C., Filippi, S., Gizzi, A., Ricci, P.E.: On spiral waves arising in natural systems. Commun. Comput. Phys. 8, 610–622 (2010)

    Article  MathSciNet  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, 1st edn. Springer, New York (2011)

    Book  Google Scholar 

  6. Bürger, R., Ruiz-Baier, R., Schneider, K.: Adaptive multiresolution methods for the simulation of waves in excitable media. J. Sci. Comput. 43, 261–290 (2010)

    Article  MathSciNet  Google Scholar 

  7. Çelik, I.: Chebyshev Wavelet collocation method for solving generalized Burgers-Huxley equation. Math. Methods Appl. Sci. 39, 366–377 (2016)

    Article  MathSciNet  Google Scholar 

  8. Çiçek, Y., Tanoglu, G.: Strang splitting method for Burgers-Huxley equation. Appl. Math. Comput. 276, 454–467 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Z., Gumel, A., Mickens, R.: Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation. Nume. Methods Partial Diff. Eq. 19, 363–379 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications, 1st edn. SIAM, Philadelphia (2013)

    MATH  Google Scholar 

  11. Dautray, R., Lions, J.-L.: Mathematical Analysis and Numerical Methods for Science and Technology: Spectral Theory and Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  12. Ervin, V., Macías-Díaz, J., Ruiz-Ramírez, J.: A positive and bounded finite element approximation of the generalized Burgers-Huxley equation. J. Math. Anal. Appl. 424, 1143–1160 (2015)

    Article  MathSciNet  Google Scholar 

  13. Grisvard, P.: Elliptic Problems in Nonsmooth Domains, 1st edn. Pitman, Boston, MA (1985)

    MATH  Google Scholar 

  14. Hashim, I., Noorani, M., Al-Hadidi, M.: Said: solving the generalized Burgers-Huxley equation using the adomian decomposition method. Math. Comput. Modell. 43, 1404–1411 (2006)

    Article  Google Scholar 

  15. Javidi, M.: A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method. Appl. Math. Comput. 178, 338–344 (2006)

    MathSciNet  MATH  Google Scholar 

  16. John, V., Matthies, G., Schieweck, F., Tobiska, L.: A streamline-diffusion method for nonconforming finite element approximations applied to convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 166, 85–97 (1998)

    Article  MathSciNet  Google Scholar 

  17. Khattak, A.J.: A computational meshless method for the generalized Burger’s-Huxley equation. Appl. Math. Modell. 33, 3718–3729 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kumar, B.R., Sangwan, V., Murthy, S., Nigam, M.: A numerical study of singularly perturbed generalized Burgers-Huxley equation using three-step Taylor-Galerkin method. Comput. Math. Appl. 62, 776–786 (2011)

    Article  MathSciNet  Google Scholar 

  19. Lesaint, P., Raviart, P.-A.: On a finite element method for solving the neutron transport equation. Publications mathématiques et informatique de Rennes 1–40,(1974)

  20. Macías-Díaz, J.E.: A modified exponential method that preserves structural properties of the solutions of the Burgers-Huxley equation. Int. J. Comput. Math. 95, 3–19 (2018)

    Article  MathSciNet  Google Scholar 

  21. Maurya, D.K., Singh, R., Rajoria, Y.K.: A mathematical model to solve the Burgers-Huxley equation by using new homotopy perturbation method. Int. J. Math. Eng. Manag. Sci. 4, 1483–1495 (2019)

    Google Scholar 

  22. Mohan, M.T.: Mild solutions for the stochastic generalized Burgers-Huxley equation. J. Theor. Prob. https://doi.org/10.1007/s10959-021-01100-w (2021)

  23. Mohan, M.T., Khan, A.: On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete Cont. Dynam. Syst. B 26, 3943–3988 (2020)

    Article  Google Scholar 

  24. Murray, J.D.: Mathematical Biology. Springer, Berlin (2002)

    Book  Google Scholar 

  25. Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation, tech. rep., Los Alamos Scientific Lab., N. Mex.(USA), (1973)

  26. Sari, M., Gürarslan, G., Zeytinoglu, A.: High-order finite difference schemes for numerical solutions of the generalized Burgers-Huxley equation. Num. Methods Partial Diff. Eq. 27, 1313–1326 (2011)

    Article  MathSciNet  Google Scholar 

  27. Satsuma, J.: Exact solutions of Burgers’ equation with reaction terms. Topics in soliton theory and exact solvable nonlinear equations 255–262,(1987)

  28. Shukla, S., Kumar, M.: Error analysis and numerical solution of Burgers–Huxley equation using 3-scale Haar wavelets, Engineering with Computers, in press (2020)

  29. Temam, R.: Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, (1995)

  30. Temam, R.: Navier-Stokes equations: theory and numerical analysis, vol. 343. American Mathematical Soc (2001)

  31. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 1054. Springer, Berlin (1984)

    MATH  Google Scholar 

  32. Verma, A.K., Kayenat, S.: An efficient Mickens’ type NSFD scheme for the generalized Burgers Huxley equation. J. Diff. Eq. Appl. 26, 1213–1246 (2020)

    Article  MathSciNet  Google Scholar 

  33. Wang, X., Zhu, Z., Lu, Y.: Solitary wave solutions of the generalised Burgers-Huxley equation. J. Phys. A Math. Gen. 23, 271 (1990)

    Article  MathSciNet  Google Scholar 

  34. Wang, X.-Y.: Nerve propagation and wall in liquid crystals. Phys. Lett. A 112, 402–406 (1985)

    Article  Google Scholar 

  35. Wasim, I., Abbas, M., Amin, M.: Hybrid B-spline collocation method for solving the generalized Burgers-Fisher and Burgers-Huxley equations. Math. Probl. Eng. 2018, 1–18 (2018)

    Article  MathSciNet  Google Scholar 

  36. Yefimova, O.Y., Kudryashov, N.: Exact solutions of the Burgers-Huxley equation. J. Appl. Math. Mech. 3, 413–420 (2004)

    Article  MathSciNet  Google Scholar 

  37. Zhou, H., Sheng, Z., Yuan, G.: Physical-bound-preserving finite volume methods for the Nagumo equation on distorted meshes. Comput. Math. Appl. 77, 1055–1070 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

AK has been supported by the Sponsored Research & Industrial Consultancy (SRIC), Indian Institute of Technology Roorkee, India through the faculty initiation grant MTD/FIG/100878; MTM has been supported by the Department of Science and Technology (DST), India through the Innovation in Science Pursuit for Inspired Research (INSPIRE) Faculty Award IFA17-MA110; and RRB has been supported by the Monash Mathematics Research Fund S05802-3951284, by the HPC-Europa3 Transnational Access programme through grant HPC175QA9K, and by the Ministry of Science and Higher Education of the Russian Federation within the framework of state support for the creation and development of World-Class Research Centers “Digital biodesign and personalised healthcare” No. 075-15-2020-926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arbaz Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Mohan, M.T. & Ruiz-Baier, R. Conforming, Nonconforming and DG Methods for the Stationary Generalized Burgers-Huxley Equation. J Sci Comput 88, 52 (2021). https://doi.org/10.1007/s10915-021-01563-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01563-3

Keywords

Mathematics Subject Classification

Navigation