Skip to main content
Log in

Stability and Conservation Properties of Hermite-Based Approximations of the Vlasov-Poisson System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Spectral approximation based on Hermite-Fourier expansion of the Vlasov-Poisson model for a collisionless plasma in the electrostatic limit is provided by adding high-order artificial collision operators of Lenard-Bernstein type. These differential operators are suitably designed in order to preserve the physically-meaningful invariants (number of particles, momentum, energy). In view of time-discretization, stability results in appropriate norms are presented. In this study, necessary conditions link the magnitude of the artificial collision term, the number of spectral modes of the discretization, as well as the time-step. The analysis, carried out in full for the Hermite discretization of a simple linear problem in one-dimension, is then partly extended to cover the complete nonlinear Vlasov-Poisson model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Not applicable.

References

  1. Arakawa, A., Jung, J.-H.: Multiscale modeling of the moist-convective atmosphere—a review. Atmos. Res. 102(3), 263–285 (2011)

    Article  Google Scholar 

  2. Armstrong, T.P., Harding, R.C., Knorr, G., Montgomery, D.: Solution of Vlasov’s equation by transform methods. Methods Comput. Phys. 9, 29–86 (1970)

    Google Scholar 

  3. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, pp. 209–486. Elsevier, Amsterdam (1997)

    Google Scholar 

  4. Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov-Poisson system: comparison between implicit Hermite spectral and Particle-in-Cell methods. Comput. Phys. Commun. 198, 47–58 (2015)

    Article  MathSciNet  Google Scholar 

  5. Camporeale, E., Delzanno, G.L., Bergen, B.K., Moulton, J.D.: On the velocity space discretization for the Vlasov-Poisson system: comparison between Hermite spectral and Particle-in-Cell methods. Part 2: fully-implicit scheme. Comput. Phys. Commun. 198, 47–58 (2016)

    Article  MathSciNet  Google Scholar 

  6. Camporeale, E., Delzanno, G.L., Lapenta, G., Daughton, W.: New approach for the study of linear Vlasov stability of inhomogeneous systems. Phys. Plasmas 13(9), 092110 (2006)

    Article  MathSciNet  Google Scholar 

  7. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T. A. Spectral Methods in Fluid Dynamics. Scientific Computation., 1st edn. Springer, Berlin Heidelberg (1988)

  8. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T. A.: Spectral Methods—Fundamentals in Single Domains. Springer, Berlin (2006)

  9. Delzanno, G.L.: Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form. J. Comput. Phys. 301, 338–356 (2015)

    Article  MathSciNet  Google Scholar 

  10. Fatone, L., Funaro, D., Manzini, G.: On the use of Hermite functions for the Vlasov–Poisson system. In: Sherwin S.J., Moxey D., Peiró J., Vincent P.E., Schwab C. (eds.) Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018, pp. 143–153. Springer International Publishing (2020)

  11. Funaro, D.: Spectral elements for transport-dominated equations. Lecture Notes in Computational Science and Engineering, vol. 1. Springer, Berlin, Heidelberg, 1 edition (1997)

  12. Funaro, D.: Polynomial approximation of differential equations, vol. 8. Springer, Berlin (1992)

    Book  Google Scholar 

  13. Gajewski, H., Zacharias, K.: On the convergence of the Fourier-Hermite transformation method for the Vlasov equation with an artificial collision term. J. Math. Anal. Appl. 61(3), 752–773 (1977)

    Article  MathSciNet  Google Scholar 

  14. Glassey, R.T.: The Cauchy Problem in Kinetic Theory, vol. 52. SIAM (1996)

  15. Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949)

    Article  MathSciNet  Google Scholar 

  16. Guo, B.-Y., Ma, H.-P., Tadmor, E.: Spectral vanishing viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 39, 1254–1268 (2001)

    Article  MathSciNet  Google Scholar 

  17. Hazeltine, R.D., Waelbroeck, F.: The framework of plasma physics: Frontiers in Physics, vol. 1, 1st edn. Perseus Books, Westview Press, New York (1998)

    Google Scholar 

  18. Holloway, J.P.: Spectral velocity discretizations for the Vlasov-Maxwell equations. Transport Theory Stat. Phys. 25(1), 1–32 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kaber, S.M.O.: A Legendre pseudospectral viscosity method. J. Comput. Phys. 128, 165–180 (1996)

    Article  MathSciNet  Google Scholar 

  20. Klimas, A.J.: A numerical method based on the Fourier-Fourier transform approach for modeling 1-D electron plasma evolution. J. Comput. Phys. 50(2), 270–306 (1983)

    Article  MathSciNet  Google Scholar 

  21. Koshkarov, O., Manzini, G., Delzanno, G.L., Pagliantini, C., Roytershtein, V.: Conservation properties of the multi-dimensional RK-Hermite-dG method for the Vlasov-Maxwell equations. Technical Report LA-UR-19-29579, Los Alamos National Laboratory (2019)

  22. Koshkarov, O., Manzini, G., Delzanno, G.L., Pagliantini, C., Roytershtein, V.: The multi-dimensional Hermite-discontinuous Galerkin method for the Vlasov–Maxwell equations. Comput. Phys. Commun. 264, 107866 (2021)

  23. Lenard, A., Bernstein, I.B.: Plasma oscillations with diffusion in velocity space. Phys. Rev. 112, 1456–1459 (1958)

    Article  MathSciNet  Google Scholar 

  24. Luo, X.-P., Wang, C.-H., Zhang, Y., Yi, H.-L., Tan, H.-P.: Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme. Phys. Rev. E 97, 063302 (2018)

    Article  Google Scholar 

  25. Ma, H., Sun, W., Tang, T.: Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains. SIAM J. Numer. Anal. 43(1), 58–75 (2005)

    Article  MathSciNet  Google Scholar 

  26. Maday, Y., Kaber, S.M.O., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30, 321–342 (1993)

    Article  MathSciNet  Google Scholar 

  27. Manzini, G., Delzanno, G.L.: A discontinuous Galerkin-Hermite discretization of the Vlasov-Poisson system. Technical Report LA-UR-17-28541, Los Alamos National Laboratory (2017)

  28. Manzini, G., Delzanno, G.L.: The Legendre-discontinuous Galerkin discretization of the 1D-1V Vlasov-Poisson system. Technical Report LA-UR-17-28540, Los Alamos National Laboratory (2017)

  29. Manzini, G., Delzanno, G.L., Vencels, J., Markidis, S.: A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system. J. Comput. Phys. 317, 82–107 (2016)

    Article  MathSciNet  Google Scholar 

  30. Manzini, G., Funaro, D., Delzanno, G.L.: Convergence of spectral discretizations of the Vlasov–Poisson system. SIAM J. Numer. Anal. 55(5), 2312–2335 (2017)

  31. Manzini, G., Koshkarov, O., Delzanno, G.L.: The Legendre-discontinuous Galerkin discretization of the 1D-1V Vlasov-Poisson system. Technical Report LA-UR-19-29576, Los Alamos National Laboratory (2019)

  32. Pagliantini, C., Delzanno, G.L., Manzini, G., Markidis, S.: Physics-based adaptivity of a spectral method for the Vlasov-Poisson equations based on the asymmetrically-weighted Hermite expansion in velocity space. Technical Report LA-UR-19-29686, Los Alamos National Laboratory (2019)

  33. Pareschi, L., Dimarco, G.: Numerical methods for kinetic equations. Technical Report hal-00986714, HAL, archives-ouvertes (2014)

  34. Parker, J.T., Dellar, P.J.: Fourier-Hermite spectral representation for the Vlasov-Poisson system in the weakly collisional limit. J. Plasma Phys. 81(2), 305810203 (2015)

    Article  Google Scholar 

  35. Roytershtein, V., Boldyrev, S., Delzanno, G.L., Chen, D., Groselij, C., Loureiro, N.: Numerical study of inertial kinetic-Alfven turbulence. Astrophys. J. 870(2), 103 (2018)

    Article  Google Scholar 

  36. Roytershteyn, V., Delzanno, G.L.: Spectral approach to plasma kinetic simulations based on Hermite decomposition in the velocity space. Front. Astron. Space Sci. 5, 1–27 (2018)

    Article  Google Scholar 

  37. Schumer, J.W., Holloway, J.P.: Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 144(2), 626–661 (1998)

    Article  Google Scholar 

  38. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, 1st edn. Springer, Berlin (2011)

    Book  Google Scholar 

  39. Tadmor, E.: Convergence of spectral methods for nonlinear conservation laws. SIAM J.Numer. Anal. 26, 30–44 (1989)

    Article  MathSciNet  Google Scholar 

  40. Tang, T.: The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 14(3), 594–606 (1993)

    Article  MathSciNet  Google Scholar 

  41. Vencels, J., Delzanno, G.L., Johnson, A., Peng, I.B., Laure, E., Markidis, S.: Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments. Proc. Comput. Sci. 51, 1148–1157 (2015)

    Article  Google Scholar 

  42. Vencels, J., Delzanno, G.L., Manzini, G., Markidis, S., Bo Peng, I., Roytershteyn, V.: SpectralPlasmaSolver: a spectral code for multiscale simulations of collisionless, magnetized plasmas. J. Phys. Conf. Series 719(1), 012022 (2016)

    Article  Google Scholar 

Download references

Funding

This work was supported by the LDRD program under project number 20170207ER of the Los Alamos National Laboratory (LANL). LANL is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract No. 89233218CNA000001). Both the authors are affiliated to the Italian Istituto Nazionale di Alta Matematica (INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Funaro.

Ethics declarations

Conflicts of interest

None.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We prove here some inequalities concerning Hermite expansions. In what follows, \(\varphi \) is supposed to be a function such that \(\varphi =\sum _{n=0}^\infty C_{n}H_{n}\), where the coefficients are computed with the help of  (13). We first present a particular version of the Poincaré inequality.

Theorem A.1

If \(\varphi =\sum _{n=0}^\infty C_{n}H_{n}\), then

$$\begin{aligned} \int _{\mathbb {R}}\varphi ^2e^{-v^2}\,dv\le \frac{1}{2}\int _{\mathbb {R}}\big (\varphi ^{\prime }\big )^2e^{-v^2}\,dv+\sqrt{\pi }C_{0}^2. \end{aligned}$$
(A.1)

The inequality can be generalized to derivatives of order \(m>1\)

$$\begin{aligned} \int _{\mathbb {R}}\varphi ^2e^{-v^2}\,dv\le \frac{1}{2^{m}\,m!}\int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv+\sqrt{\pi }\sum _{\ell =0}^{m-1}\,2^{\ell }\,\ell !\,C_{\ell }^2. \end{aligned}$$
(A.2)

Proof

The orthogonality of the first derivatives of the Hermite polynomials, Eq. (12), and the fact that \(2n\ge 2\) for \(n\ge 1\), imply

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{\prime }\big )^2e^{-v^2}\,dv&=\int _{\mathbb {R}}\big ( \sum _{n=1}^\infty C_{n}H^{\prime }_{n} \big )^2e^{-v^2}\,dv= \sum _{n=1}^\infty C_{n}^2\int _{\mathbb {R}}\big (H^{\prime }_{n}\big )^2e^{-v^2}\,dv\nonumber \\&= \sum _{n=1}^\infty C_{n}^2\,2n\,\int _{\mathbb {R}}H^2_{n}e^{-v^2}\,dv\ge 2\sum _{n=1}^\infty C_{n}^2\int _{\mathbb {R}}H_{n}^2e^{-v^2}\,dv, \end{aligned}$$
(A.3)

where all summations start from \(n=1\) since \(H_{0}=1\) and \(H^{\prime }_{0}=0\).

Successively, we add and subtract the weighted integral of the zeroth-order mode, i.e, \(C^2_{0}H^2_{0}\), to the last member of inequality (A.3) and use the expansion of \(\varphi \), so to have

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{\prime }\big )^2e^{-v^2}\,dv&\ge 2\sum _{n=0}^\infty C_{n}^2\int _{\mathbb {R}}H_{n}^2e^{-v^2}\,dv-2C_{0}^2\int _{\mathbb {R}}H_{0}^2e^{-v^2}\,dv\nonumber \\&= 2\int _{\mathbb {R}}\varphi ^2e^{-v^2}\,dv- 2 \sqrt{\pi }C_{0}^2. \end{aligned}$$
(A.4)

By reversing this inequality we find that

$$\begin{aligned} \int _{\mathbb {R}}\varphi ^2e^{-v^2}\,dv\le \frac{1}{2}\int _{\mathbb {R}}\big (\varphi ^{\prime }\big )^2e^{-v^2}\,dv+\sqrt{\pi }C_{0}^2, \end{aligned}$$

which is the first inequality  (A.1). We generalize the result to derivatives of order \(m>1\) as follows. Since \(H^{(m)}_{n}=0\) for \(n<m\), using formulas (9) and (11), we find

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv&= \int _{\mathbb {R}}\big ( \sum _{n=m}^\infty C_{n}H^{(m)}_{n} \big )^2e^{-v^2}\,dv= \sum _{n=m}^\infty C_{n}^2\int _{\mathbb {R}}\big (H^{(m)}_{n}\big )^2e^{-v^2}\,dv\nonumber \\&= \sum _{n=m}^\infty C_{n}^2\,2^{m}\frac{n!}{(n-m)!}\,\int _{\mathbb {R}}H^2_{n}e^{-v^2}\,dv\ge 2^{m}\,m!\sum _{n=m}^\infty C_{n}^2\int _{\mathbb {R}}H_{n}^2e^{-v^2}\,dv, \end{aligned}$$
(A.5)

as \(n!/{(n-m)!}\ge m!\), when \(n\ge m\). Now, we add and subtract the weighted integral of the first m modes, i.e., \(\big (C_{\ell }H_{\ell }\big )^2\), \(\ell =0,\ldots ,m-1\), to the last member of (A.5), and use the normalization of the Hermite polynomials to find out that

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv&\ge 2^{m}\,m!\left( \sum _{n=0}^\infty C_{n}^2\int _{\mathbb {R}}H_{n}^2e^{-v^2}\,dv-\sum _{\ell =0}^{m-1}C_{\ell }^2\int _{\mathbb {R}}H_{\ell }^2e^{-v^2}\,dv\right) \nonumber \\&= 2^{m}\,m!\left( \int _{\mathbb {R}}\varphi ^2e^{-v^2}\,dv-\sqrt{\pi }\sum _{\ell =0}^{m-1}\,2^{\ell }\,\ell !\,C_{\ell }^2 \right) . \end{aligned}$$
(A.6)

By reversing this inequality we easily arrive at  (A.2). \(\square \)

A further generalization of the previous result is provided by the following statement.

Theorem A.2

(Generalized Poincaré-type inequality) If \(\varphi =\sum _{n=0}^\infty C_{n}H_{n}\), then for \(m>p\) one has

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{(p)}\big )^2e^{-v^2}\,dv\le \frac{1}{2^{m-p}\,(m-p)!}\int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv+ 2^{p}\,\sqrt{\pi }\sum _{\ell =p}^{m-1}\,2^{\ell }\, \frac{(\ell !)^2}{(\ell -p)!}\,C_{\ell }^2. \end{aligned}$$
(A.7)

Proof

By noting that \(H^{m}=H^{(p+(m-p))}=\big (H^{(p)}\big )^{(m-p)}\), a straightforward calculation exploiting the orthogonality of the derivatives of the Hermite polynomials yields

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv&= \int _{\mathbb {R}}\big ( \sum _{n=m}^\infty C_{n}H^{(m)}_{n} \big )^2e^{-v^2}\,dv= \int _{\mathbb {R}}\big ( \sum _{n=m}^\infty C_{n}H^{(p+(m-p))}_{n} \big )^2e^{-v^2}\,dv\nonumber \\&= \sum _{n=m}^\infty C_{n}^2\,2^{m-p}\frac{n!}{(n-(m-p))!}\,\int _{\mathbb {R}}\big (H^{(p)}_{n}\big )^2e^{-v^2}\,dv\nonumber \\&\ge 2^{m-p}\,(m-p)!\sum _{n=m}^\infty C_{n}^2\int _{\mathbb {R}}\big (H_{n}^{(p)}\big )^2e^{-v^2}\,dv, \end{aligned}$$
(A.8)

where we also used the fact that \(n!/{(n-(m-p))!}>(m-p)!\), for \(n>1\).

We add and subtract the weighted integrals of \(C_{\ell }^2\big (H_{\ell }^{(p)}\big )^2\) for \(\ell =p,\ldots ,p+(m-p)-1\), to the last member of (A.8) and we repeat the same argument as above until we obtain

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{(p)}\big )^2e^{-v^2}\,dv&\le \frac{1}{2^{m-p}\,(m-p)!}\int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv+ \sum _{\ell =p}^{m-1}C_{\ell }^2\int _{\mathbb {R}}\big (H_{\ell }^{(p)}\big )^2e^{-v^2}\,dv\\&= \frac{1}{2^{m-p}\,(m-p)!}\int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv+ \sum _{\ell =p}^{m-1}C_{\ell }^2\,2^{p}\,\frac{\ell !}{(\ell -p)!}\int _{\mathbb {R}}H_{\ell }^{2}e^{-v^2}\,dv\\&= \frac{1}{2^{m-p}\,(m-p)!}\int _{\mathbb {R}}\big (\varphi ^{(m)}\big )^2e^{-v^2}\,dv+ 2^{p}\,\sqrt{\pi }\sum _{\ell =p}^{m-1}\,2^{\ell }\,\frac{(\ell !)^2}{(\ell -p)!}\,C_{\ell }^2, \end{aligned}$$

which is our assertion. \(\square \)

In particular, if \(\varphi \) belongs to the space of polynomials of degree at most N, we have \(2n\le 2N\), so that the relations in (A.3) can be adjusted to obtain the so called inverse inequality

$$\begin{aligned} \int _{\mathbb {R}}\big (\varphi ^{\prime }\big )^2e^{-v^2}\,dv\le 2N \int _{\mathbb {R}}\varphi ^2e^{-v^2}\,dv. \end{aligned}$$
(A.9)

Another useful inequality is

$$\begin{aligned} \int _{\mathbb {R}}v^2H_{n}^2e^{-v^2}\,dv\le \frac{3}{4}\int _{\mathbb {R}}\big (H^{\prime }_{n}\big )^2e^{-v^2}\,dv, \qquad \forall n\ge 1. \end{aligned}$$
(A.10)

In order to prove it, we combine (7) and (8) to get

$$\begin{aligned} 2vH_{n} = H_{n}^{\prime } + H_{n+1} = 2nH_{n-1} + H_{n+1} \quad \forall n\ge 1. \end{aligned}$$
(A.11)

Finally, we deduce (A.10) from the sequence of relations

$$\begin{aligned} \int _{\mathbb {R}}v^2H_{n}^2e^{-v^2}\,dv&= \int _{\mathbb {R}}n^2H_{n-1}^2e^{-v^2}\,dv+\frac{1}{4}\int _{\mathbb {R}}H_{n+1}^2e^{-v^2}\,dv\nonumber \\&= \sqrt{\pi } \left[ n^2\,2^{n-1}\,(n-1)! + \frac{1}{4}\,2^{n+1}\,(n+1)! \right] = \sqrt{\pi }\left[ 2^{n-1}\,n\,n! + 2^{n-1}(n+1)n! \right] \nonumber \\&= \sqrt{\pi } 2^{n-1}(2n+1)n! \ \le \ \sqrt{\pi }\,\frac{3}{4}\,2^{n+1}\,n\,n! = \frac{3}{4}\int _{\mathbb {R}}\big (H^{\prime }_{n}\big )^2e^{-v^2}\,dv, \qquad \forall n\ge 1, \end{aligned}$$
(A.12)

where we noted that \(2n+1\le 2n+n=3n\). The last equality follows from (12).

The inequality (A.10) is the starting point to show that

$$\begin{aligned} \int _{\mathbb {R}}v^2\varphi ^2e^{-v^2}\,dv\le \frac{3}{4}N\int _{\mathbb {R}}\big (\varphi '\big )^2e^{-v^2}\,dv, \end{aligned}$$
(A.13)

which holds for every polynomial \(\varphi =\sum _{n=1}^NC_{n}H_{n}\) with degree less or equal to N and \(C_{0}=0\). We argue as follows. For a given set of values \(\alpha _n\), the relation here below is a consequence of the Schwartz inequality

$$\begin{aligned} \left( \sum _{n=1}^{N}\alpha _n \right) ^2 = \left( \sum _{n=1}^{N} 1\cdot \alpha _n \right) ^2 \le \sum _{n=1}^{N}1^2 \ \sum _{n=1}^{N}\alpha _n^2 = N \sum _{n=1}^{N}\alpha _n^2. \end{aligned}$$
(A.14)

With the help of the above inequality, the orthogonality of the Hermite polynomials implies

$$\begin{aligned} \int _{\mathbb {R}}v^2\varphi ^2e^{-v^2}\,dv&= \int _{\mathbb {R}}v^2\Big (\sum _{n=1}^{N}C_nH_{n}\Big )^2e^{-v^2}\,dv\le N\sum _{n=1}^{N}C_{n}^2\int _{\mathbb {R}}v^2H^2_{n}e^{-v^2}\,dv\\&\le \frac{3}{4}N\sum _{n=1}^{N}C_{n}^2\int _{\mathbb {R}}\big (H^{\prime }_{n}\big )^2e^{-v^2}\,dv= \frac{3}{4}N\int _{\mathbb {R}}\big (\varphi '\big )^2e^{-v^2}\,dv, \end{aligned}$$

that actually corresponds to (A.13).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funaro, D., Manzini, G. Stability and Conservation Properties of Hermite-Based Approximations of the Vlasov-Poisson System. J Sci Comput 88, 29 (2021). https://doi.org/10.1007/s10915-021-01537-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01537-5

Keywords

Mathematics Subject Classification

Navigation