Skip to main content
Log in

Computing Enclosures for the Matrix Mittag–Leffler Function

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose two algorithms for numerically calculating interval matrices including two-parameter matrix Mittag–Leffler (ML) functions. We first present an algorithm for computing enclosures for scalar ML functions. Then, the two proposed algorithms are developed by exploiting the scalar algorithm and verified block diagonalization. The first algorithm relies on a numerical spectral decomposition. The cost of this algorithm is only cubic plus that of the scalar algorithm if the second parameter is not too small. The second algorithm is based on a numerical Jordan decomposition, and can also be applied to defective matrices. The cost of this algorithm is quartic plus that of the scalar algorithm. A numerical experiment illustrates an application to a fractional differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.: Mittag–Leffler Functions. Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  2. Haubold, H.J., Mathai, A.M., Saxena, R.K.: Mittag–Leffler functions and their applications. J. Appl. Math. 2011, 298628 (2011)

    Article  MathSciNet  Google Scholar 

  3. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag–Leffler function \(E_{\alpha ,\beta }(z)\) and its derivative. Fract. Calc. Appl. Anal. 5, 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Seybold, H., Hilfer, R.: Numerical algorithm for calculating the generalized Mittag–Leffler function. SIAM J. Numer. Anal. 47(1), 69–88 (2008)

    Article  MathSciNet  Google Scholar 

  5. Garrappa, R.: Numerical evaluation of two and three parameter Mittag–Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    Article  MathSciNet  Google Scholar 

  6. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM Publications, Philadelphia (2008)

    Book  Google Scholar 

  7. Garrappa, R., Popolizio, M.: Computing the matrix Mittag–Leffler function with applications to fractional calculus. J. Sci. Comput. 77, 129–153 (2018)

    Article  MathSciNet  Google Scholar 

  8. Duan, J., Chen, L.: Solution of fractional differential equation systems and computation of matrix Mittag–Leffler functions. Symmetry 10(10), 503 (2018)

    Article  Google Scholar 

  9. Popolizio, M.: On the matrix Mittag–Leffler function: theoretical properties and numerical computation. Mathematics 7(12), 1140 (2019)

    Article  Google Scholar 

  10. Higham, N.J., Liu, X.: A multiprecision derivative-free Schur–Parlett algorithm for computing matrix functions. MIMS EPrint 2020.19, (2020) http://eprints.maths.manchester.ac.uk/2781/

  11. Bochev, P., Markov, S.: A self-validating numerical method for the matrix exponential. Computing 43, 59–72 (1989)

    Article  MathSciNet  Google Scholar 

  12. Bochev, P.: Simultaneous self-verified computation of \(\exp (A)\) and \(\int _0^1\exp (As)ds\). Computing 45, 183–191 (1990)

    Article  MathSciNet  Google Scholar 

  13. Frommer, A., Hashemi, B.: Verified computation of square roots of a matrix. SIAM J. Matrix Anal. Appl. 31, 1279–1302 (2009)

    Article  MathSciNet  Google Scholar 

  14. Frommer, A., Hashemi, B., Sablik, T.: Computing enclosures for the inverse square root and the sign function of a matrix. Linear Algebra Appl. 456, 199–213 (2014)

    Article  MathSciNet  Google Scholar 

  15. Miyajima, S.: Fast enclosure for a matrix inverse square root. Linear Algebra Appl. 467, 116–135 (2015)

    Article  MathSciNet  Google Scholar 

  16. Miyajima, S.: Fast verified computation for the matrix principal \(p\)th root. J. Comput. Appl. Math. 330, 276–288 (2018)

    Article  MathSciNet  Google Scholar 

  17. Miyajima, S.: Verified computation of the matrix exponential. Adv. Comput. Math. 45, 137–152 (2019)

    Article  MathSciNet  Google Scholar 

  18. Miyajima, S.: Verified computation for the matrix principal logarithm. Linear Algebra Appl. 569, 38–61 (2019)

    Article  MathSciNet  Google Scholar 

  19. Miyajima, S.: Verified computation for the matrix Lambert \(W\) function. Appl. Math. Comput. 362, 124555 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Frommer, A., Hashemi, B.: Computing enclosures for the matrix exponential. SIAM J. Matrix Anal. Appl. 41(4), 1674–1703 (2020)

    Article  MathSciNet  Google Scholar 

  21. Miyajima, S.: Verified computation for the geometric mean of two matrices. Jpn. J. Ind. Appl. Math. 38, 211–232 (2021)

    Article  MathSciNet  Google Scholar 

  22. Miyajima, S.: Verified computation of real powers of matrices. J. Comput. Appl. Math. 391, 113431 (2021)

    Article  MathSciNet  Google Scholar 

  23. Miyajima, S.: Verified computation of matrix gamma function. Linear Multilinear Algebra https://doi.org/10.1080/03081087.2020.1757602

  24. Rohn, J.: VERSOFT: Verification Software in MATLAB/INTLAB. http://uivtx.cs.cas.cz/~rohn/matlab

  25. Rump, S.M.: INTLAB-INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–107. Kluwer, Dordrecht (1999)

    Chapter  Google Scholar 

  26. Miyajima, S.: Fast enclosure for all eigenvalues and invariant subspaces in generalized eigenvalue problems. SIAM J. Matrix Anal. Appl. 35, 1205–1225 (2014)

    Article  MathSciNet  Google Scholar 

  27. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  28. de Figueiredo, L.H., Stolfi, J.: Affine arithmetic: concepts and applications. Numer. Algorithms 37, 147–158 (2004)

    Article  MathSciNet  Google Scholar 

  29. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MathSciNet  Google Scholar 

  30. Rump, S.M., Zemke, J.-P.M.: On eigenvector bounds. BIT Numer. Math. 43, 823–837 (2003)

    Article  MathSciNet  Google Scholar 

  31. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26(6), 1955–1988 (2005)

    Article  MathSciNet  Google Scholar 

  32. Zeng, Z., Li, T.-Y.: NAClab: A Matlab toolbox for numerical algebraic computation. ACM Commun. Comput. Algebra 47, 170–173 (2013)

    Article  Google Scholar 

  33. Fasi, M., Higham, N.J., Iannazzo, B.: An algorithm for the matrix Lambert \(W\) function. SIAM J. Matrix Anal. Appl. 36, 669–685 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Roberto Garrappa (Universit à degli Studi di Bari) and the anonymous referees for their advice and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Miyajima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by JSPS KAKENHI Grant Numbers JP16K05270, JP21K03363.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyajima, S. Computing Enclosures for the Matrix Mittag–Leffler Function. J Sci Comput 87, 62 (2021). https://doi.org/10.1007/s10915-021-01447-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01447-6

Keywords

Mathematics Subject Classification

Navigation