Skip to main content
Log in

Finite Element Calculation of Photonic Band Structures for Frequency Dependent Materials

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Band structure calculation of frequency dependent photonic crystals has important applications. The associated eigenvalue problem is nonlinear and the development of convergent numerical methods is challenging. In this paper, we formulate the band structure problem as the eigenvalue problem of a holomorphic Fredholm operator function of index zero. Lagrange finite elements are used to discretize the operators. The convergence of the eigenvalues is proved using the abstract approximation theory for holomorphic operator functions. Then a spectral indicator method is developed to practically compute the eigenvalues. Numerical examples are presented to validate the theory and show the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Axmann, W., Kuchment, P.: An efficient finite element method for computing spectra of Photonic and Acoustic band-gap materials I. Scalar Case. J. Comput. Phys. 150, 468–481 (1999)

    Article  MathSciNet  Google Scholar 

  2. Bart, H., Gohberg, I., Kaashoek, M., Ran, A.: A state space approach to canonical factorization with applications. Birkhäuser Verlag, Basel (2010)

    Book  Google Scholar 

  3. Beyn, W.J., Latushkin, Y., Rottmann-Matthes, J.: Finding eigenvalues of holomorphic Fredholm operator pencils using boundary value problems and contour integrals. Int. Equ. Oper. Theor. 78(2), 155–211 (2014)

    Article  MathSciNet  Google Scholar 

  4. Boffi, D., Conforti, M., Gastaldi, L.: Modified edge finite elements for photonic crystals. Numer. Math. 105, 249–266 (2006)

    Article  MathSciNet  Google Scholar 

  5. Dobson, D.C.: An efficient method for band structure calculations in 2D photonic crystals. J. Comput. Phys. 149, 363–376 (1999)

    Article  Google Scholar 

  6. Effenberger, C., Kressner, D., Engström, C.: Linearization techniques for band structure calculations in absorbing photonic crystals. Internat. J. Numer. Methods Eng. 89(2), 180–191 (2012)

    Article  MathSciNet  Google Scholar 

  7. Engström, C.: On the spectrum of a holomorphic operator-valued function with applications to absorptive photonic crystals. Math. Models Methods Appl. Sci. 20, 1319–1341 (2010)

    Article  MathSciNet  Google Scholar 

  8. Engström, C., Langer, H., Tretter, C.: Rational eigenvalue problems and applications to photonic crystals. J. Math. Anal. Appl. 445(1), 240–279 (2017)

    Article  MathSciNet  Google Scholar 

  9. Engström, C., Torshage, A.: Accumulation of complex eigenvalues of a class of analytic operator functions. J. Funct. Anal. 275(2), 442–477 (2018)

    Article  MathSciNet  Google Scholar 

  10. Engström, C., Torshage, A.: Spectral properties of conservative, dispersive, and absorptive photonic crystals. GAMM-Mitt. 41 (2018), no. 3, e201800009

  11. Figotin, A., Godin, Y.A.: The computation of spectra of some 2D photonic crystals. J. Comput. Phys. 136, 585–598 (1997)

    Article  MathSciNet  Google Scholar 

  12. Gong, B., Sun, J., Turner, T., Zheng, C.: Finite element approximation of the nonlinear transmission eigenvalue problem for anisotropic media. (2019), arXiv:2001.05340

  13. Gohberg, I., Leiterer, J.: Holomorphic operator functions of one variable and applications. Birkhäuser Verlag, Basel (2009)

    Book  Google Scholar 

  14. Gu, B.Y., Zhao, L.M., Hsue, Y.C.: Applications of the expanded basis method to study the properties of photonic crystals with frequency-dependent dielectric functions and dielectric losses. Phys. Lett. A 355, 134–141 (2006)

    Article  Google Scholar 

  15. Güttel, S., Tisseur, F.: The nonlinear eigenvalue problem. Acta Numer. 26, 1–94 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ho, K.M., Chan, C.T., Soukoulis, C.M.: Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152–3155 (1990)

    Article  Google Scholar 

  17. Huang, R., Struthers, A., Sun, J., Zhang, R.: Recursive integral method for transmission eigenvalues. J. Comput. Phys. 327, 830–840 (2016)

    Article  MathSciNet  Google Scholar 

  18. Huang, R., Sun, J., Yang, C.: Recursive integral method with Cayley transformation. Numer. Linear Algebra Appl. 25(6), e2199 (2018)

    Article  MathSciNet  Google Scholar 

  19. Huang, R., Sun, J., Yang, C.: A multilevel spectral indicator method for eigenvalues of large non-Hermitian matrices. CSIAM Trans. Appl. Math. 1(3), 463–477 (2020)

    Article  Google Scholar 

  20. Ito, T., Sakoda, K.: Photonic bands of metallic systems: II Features of surface plasmon polaritons. Phys. Rev. B 64, 045117 (2001)

    Article  Google Scholar 

  21. Johnson, S.G., Joannopoulos, J.D.: Block-iterative frequency-domain methods for Maxwell’s equations in a plane wave basis. Opt. Express 8, 173–190 (2001)

    Article  Google Scholar 

  22. Karma, O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions. I. Numer. Funct. Anal. Optim. 17(3–4), 365–387 (1996)

    Article  MathSciNet  Google Scholar 

  23. Karma, O.: Approximation in eigenvalue problems for holomorphic Fredholm operator functions: II (Convergence rate). Numer. Funct. Anal. Optim. 17(3–4), 389–408 (1996)

    Article  MathSciNet  Google Scholar 

  24. Kuchment, P.: Floquet Theory for Partial Differential Equations. Birkhauser Verlag, Basel (1993)

    Book  Google Scholar 

  25. Kuzmiak, V., Maradudin, A.A., Pincemin, F.: Photonic band structures of two-dimensional systems containing metallic components. Phys. Rev. B 53, 836–844 (1994)

    Google Scholar 

  26. Kuzmiak, V., Maradudin, A.A.: Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal. Phys. Rev. B 55, 4298–4311 (1997)

    Article  Google Scholar 

  27. Kuzmiak, V., Maradudin, A.A.: Distribution of electromagnetic field and group velocities in two-dimensional periodic systems with dissipative metallic components. Phys. Rev. B. 7130–7251 (1998)

  28. Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Vector spaces of linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 28(4), 971–1004 (2006)

    Article  MathSciNet  Google Scholar 

  29. Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM Mitt. Ges. Angew. Math. Mech. 27(2), 121–152 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Mennicken, R., Möller, M.: Non-self-adjoint boundary eigenvalue problems. North-Holland Mathematics Studies, 192. North-Holland Publishing Co., Amsterdam, (2003)

  31. Norton, R., Scheichl, R.: Convergence analysis of planewave expansion methods for Schröedinger operators with discontinuous periodic potentials. SIAM J. Numer. Anal. 47(6), 4356–4380 (2010)

    Article  MathSciNet  Google Scholar 

  32. Pendry, J.B., Bell, P.M.: Transfer matrix techniques for electromagnetic waves, NATO ASI Series E: Applied Sciences, vol. 315. Kluwer, Dordrecht (1996)

  33. Qiu, M., He, S.: A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions. J. Appl. Phys. 87, 8268–8275 (2000)

    Article  Google Scholar 

  34. Raman, A., Fan, S.: Photonic band structure of dispersive metamaterials formulated as a Hermitian eigenvalue problem. Phys. Rev. Lett. 104, 087401 (2010)

    Article  Google Scholar 

  35. Ruhe, A.: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674–689 (1973)

    Article  MathSciNet  Google Scholar 

  36. Sakoda, K.: Optical Properties of Photonic Crystals. Springer, Berlin (2001)

    Book  Google Scholar 

  37. Sleijpen, G.L., Booten, G.L., Fokkema, D.R., van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)

    Article  MathSciNet  Google Scholar 

  38. Spence, A., Poulton, C.: Photonic band structure calculations using nonlinear eigenvalue techniques. J. Comput. Phys. 204, 65–81 (2005)

    Article  MathSciNet  Google Scholar 

  39. Sun, J., Zhou, A.: Finite element methods for eigenvalue problems. CRC Press, Taylor & Francis Group, Boca Raton (2016)

    Book  Google Scholar 

  40. Toader, O., John, S.: Photonic band gap enhancement in frequency-dependent dielectrics. Phys. Rev. E 70, 046605 (2004)

    Article  Google Scholar 

  41. Voss, H.: An Arnoldi method for nonlinear eigenvalue problems. BIT 44, 387–401 (2004)

    Article  MathSciNet  Google Scholar 

  42. Xiao, W., Gong, B., Sun, J., Zhang, Z.: A new finite element approach for the Dirichlet eigenvalue problem. Appl. Math. Lett. 105, 106295 (2020)

    Article  MathSciNet  Google Scholar 

  43. Xiao, W., Sun, J.: A novel computational method for band structures of dispersive photonic crystals. arXiv:2010.01603, (2020)

Download references

Acknowledgements

The research of B. Gong is supported partially by China Postdoctoral Science Foundation Grant 2019M650460. The research of Z. Zhang is supported partially by the National Natural Science Foundation of China grants NSFC 11871092, NSAF U1930402 and NSFC 11926356. All data generated or analyzed during this study are included in this published article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqiang Xiao.

Ethics declarations

Conflict of interest

There is no conflict of interests that we aware of.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We present some preliminaries on holomorphic Fredholm operator functions and the abstract approximation theory for the associated eigenvalue problems (see, e.g., [3, 13, 22, 23]). Let XY be complex Banach spaces and \(\Omega \subset \mathbb {C}\) be compact and simply connected. Denote by \(\mathcal {L}(X,Y)\) the space of bounded linear operators from X to Y.

Definition 7.1

An operator \(A \in \mathcal {L}(X, Y)\) is said to be Fredholm if

  1. 1.

    The range of A, denoted by \(\mathcal {R}(A)\), is closed in Y;

  2. 2.

    The null space of A, denoted by \(\mathcal {N}(A)\), and the quotient space \(Y/\mathcal {R}(A)\) are finite-dimensional.

The index of A is the integer defined by

$$\begin{aligned} \text {ind}(A) = \dim \mathcal {N}(A) - \dim (Y/\mathcal {R}(A)). \end{aligned}$$

Definition 7.2

Let E be a Banach space and \(\Omega \subset \mathbb C\) be an open set. A function \(f: \Omega \rightarrow E\) is called holomorphic if, for each \(w \in \Omega \),

$$\begin{aligned} f'(w) := \lim _{z \rightarrow w} \frac{f(z)-f(w)}{z-w} \end{aligned}$$

exists.

Let \(T: \Omega \rightarrow \mathcal {L}(X, Y)\) be a holomorphic operator function on \(\Omega \). Denote by \(\Phi _0(\Omega ,\mathcal {L}(X,Y))\) the set of holomorphic Fredholm operator functions of index zero [13]. Assume that \(T \in \Phi _0(\Omega ,\mathcal {L}(X,Y))\), i.e., for each \(\omega \in \Omega \), \(T(\omega ) \in \mathcal {L}(X, Y)\) is a Fredholm operator of index zero. The eigenvalue problem is to find \((\omega ,u)\in \Omega \times X,~u\ne 0\), such that

$$\begin{aligned} T(\omega )u=0. \end{aligned}$$
(7.1)

The resolvent set \(\rho (T)\) and the spectrum \(\sigma (T)\) of T with respect to \(\Omega \) are, respectively, defined as

$$\begin{aligned} \rho (T)=\{\omega \in \Omega : T(\omega )^{-1} \in \mathcal {L}(Y,X) \}\quad \text {and} \quad \sigma (T)=\Omega \backslash \rho (T). \end{aligned}$$

Throughout the paper, we assume that \(\rho (T)\ne \emptyset \). Then the spectrum \(\sigma (T)\) has no cluster points in \(\Omega \) and every \(\omega \in \sigma (T)\) is an eigenvalue [22].

To approximate the eigenvalues of T, we consider operator functions \(T_n\in \Phi _0(\Omega ,\mathcal {L}(X_n,Y_n))\), \(n\in \mathbb {N}\), such that the following properties hold [3, 22].

  1. (b1)

    There exist Banach spaces \(X_n,Y_n\), \(n\in \mathbb {N}\), and linear bounded mappings \(p_n\in \mathcal {L}(X,X_n)\), \(q_n\in \mathcal {L}(Y,Y_n)\) such that

    $$\begin{aligned} \lim \limits _{n \rightarrow \infty }\Vert p_n v\Vert _{X_n}=\Vert v\Vert _X,\, v\in X,\quad \lim \limits _{n \rightarrow \infty }\Vert q_n v\Vert _{Y_n}=\Vert v\Vert _Y,\, v\in Y. \end{aligned}$$
  2. (b2)

    The sequence \(\{T_n(\cdot )\}_{n \in \mathbb {N}}\) satisfies

    $$\begin{aligned} \Vert T_n(\omega )\Vert < \infty \quad \text {for all } \omega \in \Omega , n \in \mathbb {N}. \end{aligned}$$
  3. (b3)

    \(\{T_n(\omega )\}_{n \in \mathbb {N}}\) approximates \(T(\omega )\) for every \(\omega \in \Omega \), i.e.,

    $$\begin{aligned} \lim _{n \rightarrow \infty } \Vert T_n(\omega )p_n x - q_n T(\omega ) x\Vert _{Y_n} = 0 \quad \text {for all } x \in X. \end{aligned}$$
  4. (b4)

    Let \(\omega \in \Omega \) and \(\{x_n\} \subset X_n, n\in \mathbb {N}\) be bounded. For any subsequence \(\{x_n\}\), \(n\in N \subset \mathbb N\),

    $$\begin{aligned} \lim _{\mathbb {N} \ni n\rightarrow \infty } \Vert T_n(\omega ) x_n - q_n y\Vert _{Y_n}=0 \end{aligned}$$

    for some \(y\in Y\), there exists a subsequence \(N' \subset N\) and an element \(x\in X\) such that

    $$\begin{aligned} \lim \limits _{N' \ni n\rightarrow \infty } \Vert x_n-p_n x\Vert _{X_n}=0. \end{aligned}$$

If the above conditions are satisfied, one has the following abstract approximation result (see Section 2 of [23] or Theorem 2.10 of [3]).

Theorem 7.3

Assume that (b1)-(b4) hold. For any \(\omega \in \sigma (T)\) there exists \(n_0\in \mathbb {N}\) and a sequence \(\omega _n\in \sigma (T_n), n\ge n_0\), such that \(\omega _n\rightarrow \omega \) as \(n\rightarrow \infty \). Furthermore, letting \(G(\omega )\) be the generalized eigenspace of \(\omega \) and \(r_0\) be the maximum rank of eigenvectors associated to \(\omega \), it holds that

$$\begin{aligned} |\omega _n-\omega |\le C \varepsilon _n ^{1/{r_0}}, \end{aligned}$$

where

$$\begin{aligned} \varepsilon _n=\max \limits _{|\eta -\omega |\le \delta } \max \limits _{v\in G(\omega )}\Vert T_n(\eta ) p_n v-q_n T(\eta )v\Vert _{Y_n}, \end{aligned}$$

for sufficiently small \(\delta > 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Gong, B., Sun, J. et al. Finite Element Calculation of Photonic Band Structures for Frequency Dependent Materials. J Sci Comput 87, 27 (2021). https://doi.org/10.1007/s10915-021-01439-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01439-6

Keywords

Navigation