Skip to main content
Log in

Scalable Incremental Nonconvex Optimization Approach for Phase Retrieval

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We aim to find a solution \({\varvec{x}}\in {\mathbb {C}}^n\) to a system of quadratic equations of the form \(b_i=|{\varvec{a}}_i^*{\varvec{x}}|^2\), \(i=1,2,\ldots ,m\), e.g., the well-known NP-hard phase retrieval problem. As opposed to recently proposed state-of-the-art nonconvex methods, we revert to the semidefinite relaxation (SDR) PhaseLift convex formulation and propose a successive and incremental nonconvex optimization algorithm, termed as IncrePR, to indirectly minimize the resulting convex problem on the cone of positive semidefinite matrices. Our proposed method overcomes the excessive computational cost of typical SDP solvers as well as the need of a good initialization for typical nonconvex methods. For Gaussian measurements, which is usually needed for provable convergence of nonconvex methods, restart-IncrePR solving three consecutive PhaseLift problems outperforms state-of-the-art nonconvex gradient flow based solvers with a sharper phase transition of perfect recovery and typical convex solvers in terms of computational cost and storage. For more challenging structured (non-Gaussian) measurements often occurred in real applications, such as transmission matrix and oversampling Fourier transform, IncrePR with several consecutive repeats can be used to find a good initial guess. With further refinement by local nonconvex solvers, one can achieve a better solution than that obtained by applying nonconvex gradient flow based solvers directly when the number of measurements is relatively small. Extensive numerical tests are performed to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. For the definition of generic vectors, see the reference [2, 3].

  2. Here, the oversampling ratio d means to sample d times more points in each direction.

References

  1. Absil, P.A., Mahony, R., Sepulchre, R.: Optimization algorithms on matrix manifolds. Princeton University Press, NY (2009)

    MATH  Google Scholar 

  2. Balan, R.: Reconstruction of signals from magnitudes of redundant representations: The complex case. Foundations of Computational Mathematics pp. 1–45. https://doi.org/10.1007/s10208-015-9261-0 (2015)

  3. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345–356 (2006). https://doi.org/10.1016/j.acha.2005.07.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Phase retrieval, error reduction algorithm, and fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19(7), 1334–1345 (2002). https://doi.org/10.1364/josaa.19.001334

    Article  MathSciNet  Google Scholar 

  5. Boumal, N., Mishra, B., Absil, P.A., Sepulchre, R.: Manopt, a matlab toolbox for optimization on manifolds. J. Mach. Learn. Res. 15(1), 1455–1459 (2013)

    MATH  Google Scholar 

  6. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Programm. 95(2), 329–357 (2003)

    Article  MathSciNet  Google Scholar 

  7. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM Rev. 57(2), 225–251 (2015). https://doi.org/10.1137/151005099

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, E.J., Li, X.: Solving quadratic equations via PhaseLift when there are about as many equations as unknowns. Found. Comput.l Math. 14(5), 1017–1026 (2013). https://doi.org/10.1007/s10208-013-9162-z

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 39(2), 277–299 (2015). https://doi.org/10.1016/j.acha.2014.09.004

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via wirtinger flow: Theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2015). https://doi.org/10.1109/tit.2015.2399924

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2012). https://doi.org/10.1002/cpa.21432

    Article  MathSciNet  MATH  Google Scholar 

  12. Chandra, R., Zhong, Z., Hontz, J., McCulloch, V., Studer, C., Goldstein, T.: Phasepack: A phase retrieval library. In: 2017 51st Asilomar Conference on Signals, Systems, and Computers, pp. 1617–1621. IEEE (2017)

  13. Chen, P., Fannjiang, A., Liu, G.R.: Phase retrieval with one or two diffraction patterns by alternating projections with the null initialization. J. Fourier Anal. Appl. 16(2), 1–40 (2015)

    MATH  Google Scholar 

  14. Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. Commun. Pure Appl. Math. 70(5), 739–747 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ciliberto, C., Stamos, D., Pontil, M.: Reexamining low rank matrix factorization for trace norm regularization (2017)

  16. Demanet, L., Hand, P.: Stable optimizationless recovery from phaseless linear measurements. J. Fourier Anal. Appl. 20(1), 199–221 (2013). https://doi.org/10.1007/s00041-013-9305-2

    Article  MathSciNet  MATH  Google Scholar 

  17. Dhifallah, O., Thrampoulidis, C., Lu, Y.M.: Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. In: 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1071–1077. IEEE (2017)

  18. Duchi, J.C., Ruan, F.: Solving (most) of a set of quadratic equalities: composite optimization for robust phase retrieval. Inf. Inf. A J. IMA 8(3), 471–529 (2018)

    MathSciNet  Google Scholar 

  19. Fannjiang, A.: Absolute uniqueness of phase retrieval with random illumination. Inv. Prob. 28(7), 075008 (2012). https://doi.org/10.1088/0266-5611/28/7/075008

    Article  MathSciNet  MATH  Google Scholar 

  20. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982). https://doi.org/10.1364/ao.21.002758

    Article  Google Scholar 

  21. Fogel, F., Waldspurger, I., DâĂŹAspremont, A.: Phase retrieval for imaging problems. Math. Programm. Comput. 8(3), 311–335 (2016)

    Article  MathSciNet  Google Scholar 

  22. Hayes, M.H.: The reconstruction of a multidimensional sequence from the phase or magnitude of its fourier transform. IEEE Trans. Acoust. Speech Sig. Process. 30(2), 140–154 (1982). https://doi.org/10.1109/tassp.1982.1163863

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, W., Gallivan, K.A., Zhang, X.: Solving phaselift by low-rank riemannian optimization methods for complex semidefinite constraints. SIAM J. Sci. Comput. 39(5), B840–B859 (2017). https://doi.org/10.1137/16M1072838

    Article  MathSciNet  MATH  Google Scholar 

  24. Jaganathan, K., Eldar, Y.C., Hassibi, B.: Phase retrieval: An overview of recent developments. Mathematics (2015)

  25. JournÃl’e, M., Bach, F., Absil, P.A., Sepulchre, R.: Low-rank optimization on the cone of positive semidefinite matrices. Siam J. Optim. 20(5), 2327–2351 (2010)

    Article  MathSciNet  Google Scholar 

  26. Knyazev, A. V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. Siam J. Sci. Comput. 23(2), 517–541 (2006)

    Article  MathSciNet  Google Scholar 

  27. Kreutz-Delgado, K.: The complex gradient operator and the cr-calculus . http://arxiv.org/abs/0906.4835v1 (2009)

  28. Kuznetsova, T.I.: On the phase retrieval problem in optics. Soviet Phys. Uspekhi 31(4), 364 (1988). https://doi.org/10.1070/pu1988v031n04abeh005755

    Article  Google Scholar 

  29. Li, J., Zhao, H.: Solving phase retrieval via graph projection splitting. Inv. Prob. 36(5), 055003 (2020)

    Article  MathSciNet  Google Scholar 

  30. Li, J., Zhou, T.: Numerical optimization algorithm of wavefront phase retrieval from multiple measurements. Inv. Prob. Imag.11(4), (2016)

  31. Li, J., Zhou, T.: On relaxed averaged alternating reflections (raar) algorithm for phase retrieval with structured illumination. Inv. Prob. 33(2), 025012 (2017)

    Article  MathSciNet  Google Scholar 

  32. Li, J., Zhou, T., Wang, C.: On global convergence of gradient descent algorithms for generalized phase retrieval problem. J. Comput. Appl. Math. 329, 202–222 (2017)

    Article  MathSciNet  Google Scholar 

  33. Li, Z., Cai, J., Wei, K.: Towards the optimal construction of a loss function without spurious local minima for solving quadratic equations. CoRR abs/1809.10520 . http://arxiv.org/abs/1809.10520 (2018)

  34. Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inv. Prob. 21(1), 37–50 (2004). https://doi.org/10.1088/0266-5611/21/1/004

    Article  MathSciNet  MATH  Google Scholar 

  35. Luo, Z., Ma, W., So, A.M., Ye, Y., Zhang, S.: Semidefinite relaxation of quadratic optimization problems. IEEE Sig. Process. Mag. 27(3), 20–34 (2010)

    Article  Google Scholar 

  36. Ma, J., Ji, X., Maleki, A.: Approximate message passing for amplitude based optimization. In: International Conference on Machine Learning (2018)

  37. Metzler, C.A., Sharma, M.K., Nagesh, S., Baraniuk, R.G., Cossairt, O., Veeraraghavan, A.: Coherent inverse scattering via transmission matrices: Efficient phase retrieval algorithms and a public dataset. In: 2017 IEEE International Conference on Computational Photography (ICCP), pp. 1–16. IEEE (2017)

  38. Millane, R.P.: Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990). https://doi.org/10.1364/josaa.7.000394

    Article  Google Scholar 

  39. Misell, D.L.: A method for the solution of the phase problem in electron microscopy. J. Phys. D Appl. Phys. 6(1), L6 (1973). https://doi.org/10.1088/0022-3727/6/1/102

    Article  Google Scholar 

  40. Mishra, B., Meyer, G., Bach, F., Sepulchre, R.: Low-rank optimization with trace norm penalty. Siam J. Optim. 23(4), 2124–2149 (2013)

    Article  MathSciNet  Google Scholar 

  41. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. IEEE Trans. Sig. Process. 63(18), 4814–4826 (2015). https://doi.org/10.1109/tsp.2015.2448516

    Article  MathSciNet  MATH  Google Scholar 

  42. Nocedal, J., Wright, S.: Numerical Optimization. Springer, NY (2006)

    MATH  Google Scholar 

  43. Pham, M., Yin, P., Rana, A., Osher, S., Miao, J.: Generalized proximal smoothing (gps) for phase retrieval. Opt. Exp. 27(3), 2792–2808 (2019)

    Article  Google Scholar 

  44. Qian, J., Yang, C., Schirotzek, A., Maia, F., Marchesini, S.: Efficient algorithms for ptychographic phase retrieval. In: Contemporary Mathematics. American Mathematical Society (AMS) . https://doi.org/10.1090/conm/615/12259 (2014)

  45. Rodriguez, J.A., Xu, R., Chen, C.C., Zou, Y., Miao, J.: Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J. Appl. Crystallogr. 46(2), 312–318 (2013)

    Article  Google Scholar 

  46. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: A contemporary overview. IEEE Signal Processing Magazine 32(3), 87–109 . https://doi.org/10.1109/msp.2014.2352673 (2015)

  47. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. Found. Comput. Math. 18, 1131–1198 (2016)

    Article  MathSciNet  Google Scholar 

  48. Wang, G., Giannakis, G.B., Chen, J., AkÃğakaya, M.: Sparta: Sparse phase retrieval via truncated amplitude flow. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3974–3978 (2017)

  49. Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated amplitude flow. IEEE Trans. Inf. Theory 64(2), 773–794 (2018)

    Article  MathSciNet  Google Scholar 

  50. Wang, G., Giannakis, G.B., Saad, Y., Chen, J.: Solving almost all systems of random quadratic equations (2017)

  51. Yurtsever, A., Udell, M., Tropp, J.A., Cevher, V.: Sketchy decisions: Convex low-rank matrix optimization with optimal storage. In: 20th International Conference on Artificial Intelligence and Statistics (AISTATS2017), CONF, pp. 1188–1196 (2017)

Download references

Acknowledgements

Ji Li was supported by China Postdoctoral Science Foundation grant No. 2017M620589 and the Young Scientists Fund of the National Natural Science Foundation of China Grant No. 11801025. JFC was supported in part by Hong Kong Research Grant Council (HKRGC) Grant 16306317. The work of Hongkai Zhao is partially supported by the summer visiting program at CSRC

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cai, JF. & Zhao, H. Scalable Incremental Nonconvex Optimization Approach for Phase Retrieval. J Sci Comput 87, 43 (2021). https://doi.org/10.1007/s10915-021-01425-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01425-y

Keywords

Mathematics Subject Classification

Navigation