Skip to main content
Log in

A Weakly Non-hydrostatic Shallow Model for Dry Granular Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A non-hydrostatic depth-averaged model for dry granular flows is proposed, taking into account vertical acceleration. A variable friction coefficient based on the \(\mu (I)\) rheology is considered. The model is obtained from an asymptotic analysis in a local reference system, where the non-hydrostatic contribution is supposed to be small compared to the hydrostatic one. The non-hydrostatic counterpart of the pressure may be written as the sum of two terms: one corresponding to the stress tensor and the other to the vertical acceleration. The model introduced here is weakly non-hydrostatic, in the sense that the non-hydrostatic contribution related to the stress tensor is not taken into account due to its complex implementation. The motivation is to propose simple models including non-hydrostatic effects. In order to approximate the resulting model, a simple and efficient numerical scheme is proposed. It consists of a three-step splitting procedure and the resulting scheme is well-balanced for granular material at rest with slope smaller than the fixed repose angle. The model and numerical scheme are validated by means of several numerical tests, including a convergence test, a well-balanced test, and comparisons with laboratory experiments of granular collapse. The influence of non-hydrostatic terms and of the choice of the coordinate system (Cartesian or local) is also analyzed. We show that non-hydrostatic models are less sensitive to the choice of the coordinate system. In addition, the non-hydrostatic Cartesian model produces deposits similar to the hydrostatic local model as suggested by Denlinger and Iverson (J Geophys Res Earth Surf, 2004. https://doi.org/10.1029/2003jf000085), the flow dynamics being however different. Moreover, the proposed model, when written in Cartesian coordinates, can be seen as an improvement of their model, since the vertical velocity is computed and not estimated from the boundary conditions. In general, the non-hydrostatic model introduced here much better reproduces granular collapse experiments compared to hydrostatic models, especially at the beginning of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Andreotti, B., Forterre, Y., Pouliquen, O.: Granular Media: Between Fluid and Solid. Cambridge University Press, Cambridge (2013). https://doi.org/10.1017/CBO9781139541008

    Book  MATH  Google Scholar 

  2. Audusse, E., Bouchut, F., Bristeau, M., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, J.L., Barker, T., Gray, J.M.N.T.: A two-dimensional depth-averaged \(\mu \)(I)-rheology for dense granular avalanches. J. Fluid Mech. 787, 367–395 (2016). https://doi.org/10.1017/jfm.2015.684

    Article  MathSciNet  Google Scholar 

  4. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws: And Well-Balanced Schemes for Sources. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  5. Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model for fluidized granular flows with dilatancy effects. J. Fluid Mech. 801, 166–221 (2016). https://doi.org/10.1017/jfm.2016.417

    Article  MathSciNet  MATH  Google Scholar 

  6. Bouchut, F., Ionescu, I., Mangeney, A.: An analytic approach for the evolution of the static-flowing interface in viscoplastic granular flows. Commun. Math. Sci. 14(8), 2101–2126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouchut, F., Westdickenberg, M.: Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2(3), 359–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bouzid, M., Trulsson, M., Claudin, P., Clément, E., Andreotti, B.: Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. (2013). https://doi.org/10.1103/physrevlett.111.238301

    Article  Google Scholar 

  9. Bristeau, M.O., Mangeney, A., Sainte-Marie, J., Seguin, N.: An energy-consistent depth-averaged Euler system: derivation and properties. Discrete Contin. Dyn. Syst. Seri. B 20(4), 961–988 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brunet, M., Moretti, L., Le Friant, A., Mangeney, A., Fernández Nieto, E.D., Bouchut, F.: Numerical simulation of the 30–45 ka debris avalanche flow of Montagne Pelée volcano, Martinique: from volcano flank collapse to submarine emplacement. Nat. Hazards 87(2), 1189–1222 (2017). https://doi.org/10.1007/s11069-017-2815-5

    Article  Google Scholar 

  11. Castro, M.J., González-Vida, J.M., Parés, C.: Numerical treatment of wet/dry fronts in shallow flows with a modified Roe scheme. Math. Models Methods Appl. Sci. 16(06), 897–931 (2006). https://doi.org/10.1142/s021820250600139x

    Article  MathSciNet  MATH  Google Scholar 

  12. Castro Díaz, M.J., Fernández-Nieto, E.D.: A class of computationally fast first order finite volume solvers: PVM methods. SIAM J. Sci. Comput. 34(4), A2173–A2196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Casulli, V.: A semi-implicit finite difference method for non-hydrostatic free-surface flows. Int. J. Numer. Methods Fluids 30(4), 425–440 (1999). https://doi.org/10.1002/(sici)1097-0363(19990630)30:4<425::aid-fld847>3.0.co;2-d

  14. Delannay, R., Valance, A., Mangeney, A., Roche, O., Richard, P.: Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D Appl. Phys. 50(5), 053001 (2017)

    Article  Google Scholar 

  15. Delgado-Sánchez, J., Bouchut, F., Fernández-Nieto, E., Mangeney, A., Narbona-Reina, G.: A two-layer shallow flow model with two axes of integration, well-balanced discretization and application to submarine avalanches. J. Comput. Phys. 406, 109186 (2020). https://doi.org/10.1016/j.jcp.2019.109186

    Article  MathSciNet  Google Scholar 

  16. Denlinger, R., Iverson, R.: Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J. Geophys. Res. Earth Surf. (2004). https://doi.org/10.1029/2003jf000085

    Article  Google Scholar 

  17. Edwards, A.N., Gray, J.M.N.T.: Erosion-deposition waves in shallow granular free-surface flows. J. Fluid Mech. 762, 35–67 (2015). https://doi.org/10.1017/jfm.2014.643

    Article  MathSciNet  Google Scholar 

  18. Escalante, C., de Luna, T.M., Castro, M.: Non-hydrostatic pressure shallow flows: GPU implementation using finite volume and finite difference scheme. Appl. Math. Comput. 338, 631–659 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Escalante, C., Morales de Luna, T.: A general non-hydrostatic hyperbolic formulation for boussinesq dispersive shallow flows and its numerical approximation. J. Sci. Comput. 83(3), 1 (2020). https://doi.org/10.1007/s10915-020-01244-7

    Article  MathSciNet  MATH  Google Scholar 

  20. Fernández-Nieto, E., Bresch, D., Monnier, J.: A consistent intermediate wave speed for a well-balanced HLLC solver. C. R. Math. 346(13–14), 795–800 (2008). https://doi.org/10.1016/j.crma.2008.05.012

    Article  MathSciNet  MATH  Google Scholar 

  21. Fernández-Nieto, E.D., Bouchut, F., Bresch, D., Castro Díaz, M.J., Mangeney, A.: A new Savage–Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227(16), 7720–7754 (2008). https://doi.org/10.1016/j.jcp.2008.04.039

    Article  MathSciNet  MATH  Google Scholar 

  22. Fernández-Nieto, E.D., Gallardo, J.M., Vigneaux, P.: Efficient numerical schemes for viscoplastic avalanches. Part 1: The 1D case. J. Comput. Phys. 264, 55–90 (2014). https://doi.org/10.1016/j.jcp.2014.01.026

    Article  MathSciNet  MATH  Google Scholar 

  23. Fernández-Nieto, E.D., Garres-Díaz, J., Mangeney, A., Narbona-Reina, G.: A multilayer shallow model for dry granular flows with the \(\mu ({I})\) rheology: application to granular collapse on erodible beds. J. Fluid Mech. 798, 643–681 (2016)

    Article  MathSciNet  Google Scholar 

  24. Fernández-Nieto, E.D., Garres-Díaz, J., Mangeney, A., Narbona-Reina, G.: 2D granular flows with the \(\mu ({I})\) rheology and side walls friction: a well-balanced multilayer discretization. J. Comput. Phys. 356, 192–219 (2018). https://doi.org/10.1016/j.jcp.2017.11.038

    Article  MathSciNet  Google Scholar 

  25. Fernández-Nieto, E.D., Parisot, M., Penel, Y., Sainte-Marie, J.: A hierarchy of dispersive layer-averaged approximations of Euler equations for free surface flows. Commun. Math. Sci. 16(5), 1169–1202 (2018). https://doi.org/10.4310/cms.2018.v16.n5.a1

    Article  MathSciNet  MATH  Google Scholar 

  26. Gray, J.M.N.T., Edwards, A.N.: A depth-averaged \(\mu \)(I)-rheology for shallow granular free-surface flows. J. Fluid Mech. 755, 503–534 (2014)

    Article  MathSciNet  Google Scholar 

  27. Ionescu, I.R., Mangeney, A., Bouchut, F., Roche, R.: Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J. Non Newton. Fluid Mech. 219, 1–18 (2015). https://doi.org/10.1016/j.jnnfm.2015.02.006

    Article  MathSciNet  Google Scholar 

  28. Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A Math. Phys. Eng. Sci. 470(2170), 20130819 (2014). https://doi.org/10.1098/rspa.2013.0819

    Article  MathSciNet  MATH  Google Scholar 

  29. Iverson, R.M., Logan, M., Denlinger, R.P.: Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests. J. Geophys. Res. Earth Surf. (2004). https://doi.org/10.1029/2003jf000084

    Article  Google Scholar 

  30. Jackson, R.: The Dynamics of Fluidized Particles. Cambridges Monographs on Mechanics. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  31. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441(7094), 727–730 (2006)

    Article  MATH  Google Scholar 

  32. Jop, P., Forterre, Y., Pouliquen, O.: Initiation of granular surface flows in a narrow channel. Phys. Fluids 19(8), 088102 (2007)

    Article  MATH  Google Scholar 

  33. Kelfoun, K., Druitt, T.H.: Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J. Geophys. Res. (2005). https://doi.org/10.1029/2005jb003758

    Article  Google Scholar 

  34. Lagrée, P.Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes with a \(\mu \)(I)-rheology. J. Fluid Mech. 686, 378–408 (2011)

    Article  MathSciNet  Google Scholar 

  35. Lucas, A., Mangeney, A., Ampuero, J.P.: Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4417

    Article  Google Scholar 

  36. Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J.P., Bristeau, M.O.: Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. Earth Surf. 112(F2), F02017 (2007). https://doi.org/10.1029/2006JF000469

    Article  Google Scholar 

  37. Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., Lucas, A.: Erosion and mobility in granular collapse over sloping beds. J. Geophys. Res. Earth Surf. 115(F3), (2010). https://doi.org/10.1029/2009JF001462

  38. Mangeney-Castelnau, A., Bouchut, F., Vilotte, J.P., Lajeunesse, E., Aubertin, A., Pirulli, M.: On the use of Saint Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. Solid (2005). https://doi.org/10.1029/2004JB003161

    Article  Google Scholar 

  39. Mangeney-Castelnau, A., Vilotte, J.P., Bristeau, M.O., Perthame, B., Bouchut, F., Simeoni, C., Yerneni, S.: Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J. Geophys. Res. Solid Earth 108(B11), 2527–2544 (2003). https://doi.org/10.1029/2002JB002024

    Article  Google Scholar 

  40. Martin, N., Ionescu, I.R., Mangeney, A., Bouchut, F., Farin, M.: Continuum viscoplastic simulation of a granular column collapse on large slopes: \(\mu \)(I) rheology and lateral wall effects. Phys. Fluids 29(1), 013301 (2017). https://doi.org/10.1063/1.4971320

    Article  Google Scholar 

  41. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44(1), 300–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Peruzzetto, M., Komorowski, J.C., Le Friant, A., Rosas-Carbajal, M., Mangeney, A., Legendre, Y.: Modeling of partial dome collapse of La Soufrière of Guadeloupe volcano: implications for hazard assessment and monitoring. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-49507-0

    Article  Google Scholar 

  43. Peruzzetto, M., Mangeney, A., Bouchut, F., Grandjean, G., Levy, C., Thiery, Y., Lucas. A.: Topography curvature effects in thin-layer models for gravity-driven flows without bed erosion. hal-03039631 (Preprint, 2020). https://hal.archives-ouvertes.fr/hal-03039631, https://hal.archives-ouvertes.fr/hal-03039631/file/JGR_curvature_2019.pdf

  44. Peruzzetto, M., Mangeney, A., Grandjean, G., Levy, C., Thiery, Y., Rohmer, J., Lucas, A.: Operational estimation of landslide runout: comparison of empirical and numerical methods. Geosciences 10(11), 424 (2020). https://doi.org/10.3390/geosciences10110424

    Article  Google Scholar 

  45. Pirulli, M., Mangeney, A.: Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech. Rock Eng. 41(1), 59–84 (2008). https://doi.org/10.1007/s00603-007-0143-x

    Article  Google Scholar 

  46. Pitman, E., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 363(1832), 1573–1601 (2005). https://doi.org/10.1098/rsta.2005.1596

    Article  MathSciNet  MATH  Google Scholar 

  47. Pouliquen, O.: On the shape of granular fronts down rough inclined planes. Phys. Fluids 11(7), 1956–1958 (1999). https://doi.org/10.1063/1.870057

    Article  MathSciNet  MATH  Google Scholar 

  48. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

    Article  MATH  Google Scholar 

  50. Pouliquen, O., Forterre, Y.: A non-local rheology for dense granular flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1909), 5091–5107 (2009). https://doi.org/10.1098/rsta.2009.0171

    Article  MATH  Google Scholar 

  51. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 177–215 (1989). https://doi.org/10.1017/S0022112089000340

    Article  MathSciNet  MATH  Google Scholar 

  52. Staron, L., Lagrée, P.Y., Popinet, S.: The granular silo as a continuum plastic flow: the hour-glass vs the clepsydra. Phys. Fluids 24(10), 103301 (2012). https://doi.org/10.1063/1.4757390

    Article  Google Scholar 

  53. Stelling, G., Zijlema, M.: An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Methods Fluids 43(1), 1–23 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yamazaki, Y., Kowalik, Z., Cheung, K.: Depth-integrated, non-hydrostatic model for wave breaking and run-up. Numer. Methods Fluids 61, 473–497 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the Spanish Government and FEDER through the research projects MTM2015-70490-C2-2-R and RTI2018-096064-B-C22, and by the ERC contract ERC-CG-2013-PE10-617472 SLIDEQUAKES. The authors would like to thank Cipriano Escalante for the interesting discussions related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Garres-Díaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garres-Díaz, J., Fernández-Nieto, E.D., Mangeney, A. et al. A Weakly Non-hydrostatic Shallow Model for Dry Granular Flows. J Sci Comput 86, 25 (2021). https://doi.org/10.1007/s10915-020-01377-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01377-9

Keywords

Mathematics Subject Classification

Navigation