Skip to main content
Log in

On Time-Domain NRBC for Maxwell’s Equations and Its Application in Accurate Simulation of Electromagnetic Invisibility Cloaks

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present analytic formulas of the temporal convolution kernel functions involved in the time-domain non-reflecting boundary condition (NRBC) for the electromagnetic scattering problems. Such exact formulas themselves lead to accurate and efficient algorithms for computing the NRBC for domain reduction of the time-domain Maxwell’s system in \({\mathbb {R}}^3\). A second purpose of this paper is to derive a new time-domain model for the electromagnetic invisibility cloak. Different from the existing models, it contains only one unknown field and the seemingly complicated convolutions can be computed as efficiently as the temporal convolutions in the NRBC. The governing equation in the cloaking layer is valid for general geometry, e.g., a spherical or polygonal layer. Here, we aim at simulating the spherical invisibility cloak. We take the advantage of radially stratified dispersive media and special geometry, and develop an efficient vector spherical harmonic-spectral-element method for its accurate simulation. Compared with limited results on FDTD simulation, the proposed method is optimal in both accuracy and computational cost. Indeed, the saving in computational time is significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover, New York (1964)

    MATH  Google Scholar 

  2. Alpert, B., Greengard, L., Hagstrom, T.: Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation. SIAM J. Numer. Anal. 37(4), 1138–1164 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpert, B., Greengard, L., Hagstrom, T.: Nonreflecting boundary conditions for the time-dependent wave equation. J. Comput. Phys. 180(1), 270–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, volume 93 of Applied Mathematical Sciences, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  7. Cummer, S.A., Popa, B.I., Schurig, D., Smith, D.R., Pendry, J.B.: Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74(3), 036621 (2006)

    Article  Google Scholar 

  8. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Cloaking devices, electromagnetic wormholes, and transformation optics. SIAM Rev. 51(1), 3–33 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greenleaf, A., Lassas, M., Uhlmann, G.: Anisotropic conductivities that cannot be detected by EIT. Physiol. Meas. 24(2), 413 (2003)

    Article  Google Scholar 

  11. Grote, M.J., Keller, J.B.: On non-reflecting boundary conditions. J. Comput. Phys. 122, 231–243 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hagstrom, T.: Radiation boundary conditions for the numerical simulation of waves. Acta Numer. 8, 47–106 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hagstrom, T., Lau, S.: Radiation boundary conditions for Maxwell’s equations: a review of accurate time-domain formulations. J. Comput. Math. 25(3), 305–336 (2007)

    MathSciNet  Google Scholar 

  14. Hao, Y., Mittra, R.: FDTD Modeling of Metamaterials: Theory and Applications. Artech House, London (2008)

    MATH  Google Scholar 

  15. Hill, E.L.: The theory of vector spherical harmonics. Am. J. Phys. 22, 211–214 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, S.D., Greengard, L.: Efficient representation of nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions. Commun. Pure Appl. Math. 61(2), 261–288 (2008)

    Article  MATH  Google Scholar 

  17. Kohn, R.V., Onofrei, D., Vogelius, M.S., Weinstein, M.I.: Cloaking via change of variables for the Helmholtz equation. Commun. Pure Appl. Math. 63(8), 973–1016 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Leonhardt, U.: Optical conformal mapping. Science 312(5781), 1777–1780 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J.C., Huang, Y.Q.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials, vol. 43. Springer, Berlin (2012)

    MATH  Google Scholar 

  20. Li, J.C.: Error analysis of fully discrete mixed finite element schemes for 3D Maxwell’s equations in dispersive media. Comput. Methods Appl. Mech. Eng. 196(33), 3081–3094 (2007)

    Article  MATH  Google Scholar 

  21. Li, J.C., Huang, Y.Q., Yang, W.: Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks. J. Comput. Phys. 231(7), 2880–2891 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, J.C., Huang, Y.Q., Yang, W.: An adaptive edge finite element method for electromagnetic cloaking simulation. J. Comput. Phys. 249, 216–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, J.C., Huang, Y.Q., Yang, W.: Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks. Math. Comput. 84(292), 543–562 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J.C., Meng, C., Huang, Y.Q.: Improved analysis and simulation of a time-domain carpet cloak model. Comput. Methods Appl. Math. 19(2), 359–378 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H.Y., Zhou, T.: On approximate electromagnetic cloaking by transformation media. SIAM J. Appl. Math. 71(1), 218–241 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Monk, P.: Finite Element Methods for Maxwell’s Equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2003)

    Book  Google Scholar 

  27. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. 2. McGraw-Hill Book Co., Inc., New York (1953)

    MATH  Google Scholar 

  28. Nédélec, J.C.: Acoustic and Electromagnetic Equations, volume 144 of Applied Mathematical Sciences. Springer, New York (2001). (Integral representations for harmonic problems)

    Book  Google Scholar 

  29. Okada, N., Cole, J.B.: FDTD modeling of a cloak with a nondiagonal permittivity tensor. ISRN Opt. 2012, 063903 (2012)

    Article  Google Scholar 

  30. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  31. Orfanidis, S.J.: Electromagnetic Waves and Antennas. Rutgers University, New Brunswick (2002)

    Google Scholar 

  32. Pendry, J.B., Holden, A.J., Stewart, W.J., Youngs, I.: Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76(25), 4773 (1996)

    Article  Google Scholar 

  33. Pendry, J.B., Schurig, D., Smith, D.R.: Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rahm, M., Cummer, S.A., Schurig, D., Pendry, J.B., Smith, D.R.: Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys. Rev. Lett. 100(6), 063903 (2008)

    Article  Google Scholar 

  35. Ruan, Z.C., Yan, M., Neff, C.W., Qiu, M.: Ideal cylindrical cloak: perfect but sensitive to tiny perturbations. Phys. Rev. Lett. 99(11), 113903 (2007)

    Article  Google Scholar 

  36. Sofronov, I.L.: Artificial boundary conditions of absolute transparency for two- and three-dimensional external time-dependent scattering problems. Eur. J. Appl. Math. 9(6), 561–588 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Swarztrauber, P.N., Spotz, W.F.: Generalized discrete spherical harmonic transforms. J. Comput. Phys. 159(2), 213–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tokita, T.: Exponential decay of solutions for the wave equation in the exterior domain with spherical boundary. J. Math. Kyoto Univ. 12(2), 413–430 (1972)

    MathSciNet  MATH  Google Scholar 

  39. Tsang, M., Psaltis, D.: Magnifying perfect lens and superlens design by coordinate transformation. Phys. Rev. B. 77(3), 035122 (2008)

    Article  Google Scholar 

  40. Wang, L.L., Wang, B., Zhao, X.D.: Fast and accurate computation of time-domain acoustic scattering problems with exact nonreflecting boundary conditions. SIAM J. Appl. Math. 72(6), 1869–1898 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Watson, G.N.: A Treatise of the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

  42. Yan, M., Yan, W., Qiu, M.: Cylindrical superlens by a coordinate transformation. Phys. Rev. B 78(12), 125113 (2008)

    Article  Google Scholar 

  43. Yang, W., Li, J.C., Huang, Y.Q.: Mathematical analysis and finite element time domain simulation of arbitrary star-shaped electromagnetic cloaks. SIAM J. Numer. Anal. 56(1), 136–159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, Z.G., Wang, L.L.: Accurate simulation of circular and elliptic cylindrical invisibility cloaks. Commun. Comput. Phys. 17(3), 822–849 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang, Z.G., Wang, L.L., Rong, Z.J., Wang, B., Zhang, B.L.: Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Eng. 301, 137–163 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhai, Y.B., Ping, X.W., Jiang, W.X., Cui, T.J.: Finite-element analysis of three-dimensional axisymmetrical invisibility cloaks and other metamaterial devices. Commun. Comput. Phys. 8(4), 823–834 (2010)

    Article  Google Scholar 

  47. Zhang, B.L., Wu, B.I., Chen, H.S., Kong, J.A.: Rainbow and blueshift effect of a dispersive spherical invisibility cloak impinged on by a nonmonochromatic plane wave. Phys. Rev. Lett. 101(6), 063902 (2008)

    Article  Google Scholar 

  48. Zhao, Y., Argyropoulos, C., Hao, Y.: Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures. Opt. Express 16(9), 6717–6730 (2008)

    Article  Google Scholar 

  49. Zhao, Y., Hao, Y.: Full-wave parallel dispersive finite-difference time-domain modeling of three-dimensional electromagnetic cloaking structures. J. Comput. Phys. 228(19), 7300–7312 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research of the first author is supported by NSFC (Grants 11771137 and 12022104), the Construct Program of the Key Discipline in Hunan Province and a Scientific Research Fund of Hunan Provincial Education Department (No. 16B154). The research of the third author is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 2 Grants (MOE2018-T2-1-059 and MOE2017-T2-2-144).

The authors would like to thank Dr. Xiaodan Zhao at the National Heart Centre in Singapore for the initial exploration of this topic when she was a research associate in NTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Lian Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Vector Spherical Harmonics

We adopt the notation and setting as in Nédélec [28]. The spherical coordinates \((r,\theta ,\varphi )\) are related to the Cartesian coordinates \({\varvec{r}}=(x,y,z)\) via

$$\begin{aligned} x=r\sin \theta \cos \varphi ,\quad y=r\sin \theta \sin \varphi ,\quad z=r\cos \theta , \end{aligned}$$
(A.1)

where \(r\ge 0,\theta \in [0,\pi ]\) and \(\phi \in [0,2\pi ).\) The corresponding moving (right-handed) orthonormal coordinate basis \(\{{\varvec{e}}_r, {\varvec{e}}_\theta , {\varvec{e}}_\varphi \}\) is given by

$$\begin{aligned} \begin{aligned}&\varvec{e}_r={\varvec{r}}/{r},\;\; {\varvec{e}}_\theta =(\cos \theta \cos \varphi , \ \cos \theta \sin \varphi , \ -\sin \theta ), \;\; {\varvec{e}}_\varphi = (-\sin \varphi , \ \cos \varphi , \ 0). \end{aligned} \end{aligned}$$
(A.2)

Let \(\{Y_{l}^m\}\) be the spherical harmonics as normalized in [28], and let S be the unit sphere. Recall that

$$\begin{aligned} \nabla _S Y_l^m =\frac{\partial Y_l^m}{\partial \theta }{\varvec{e}}_\theta +\frac{1}{\sin \theta } \frac{\partial Y_l^m}{\partial \varphi }{\varvec{e}}_\varphi . \end{aligned}$$
(A.3)

The VSH family \(\big \{ \varvec{Y}_l^m , \varvec{\Psi }_{l}^m, \varvec{\Phi }_l^m\big \}:=\big \{ Y_l^m {\varvec{e}}_r, \nabla _SY_{l}^m, \nabla _S Y_l^m \wedge {\varvec{e}}_r\big \},\) which has been used in the Spherepack [37] (also see [27]) forms a complete orthogonal basis of \({\varvec{L}}^2(S):=(L^2(S))^3\) under the inner product:

$$\begin{aligned} \langle \varvec{u}, \varvec{v}\rangle _S=\int _S \varvec{u}\cdot \bar{\varvec{v}}\, dS=\int _0^{2\pi }\quad \int _0^{\pi } \varvec{u}\cdot \bar{\varvec{v}}\, \sin \theta \, d\theta d\varphi . \end{aligned}$$
(A.4)

Define the subspace of \({\varvec{L}}^2(S),\) consisting of the tangent components of the vector fields on S:

$$\begin{aligned} {\varvec{L}}_T^2(S)= \big \{\varvec{u}\in {\varvec{L}}^2(S) : \varvec{u}\cdot \hat{\varvec{x}}=0\big \}. \end{aligned}$$
(A.5)

The VSH \(\{\varvec{\Psi }_{l}^m, {\varvec{\Phi }}_l^m\}\) forms a complete orthogonal basis of \({\varvec{L}}_T^2(S).\) Consequently, the vector field expanded in terms of VSH has a distinct separation of tangential and normal components. For any vector fields \(\varvec{u}\in {\varvec{L}}^2(S)\), we write

$$\begin{aligned} {\varvec{u}}=u_{00}\varvec{Y}_0^0+\sum _{l=1}^\infty \sum _{|m|=0}^l\big \{u_{lm}^{r}\, \varvec{Y}_l^m\, +u_{lm}^{(1)}\varvec{\Psi }_{l}^m+u_{lm}^{(2)}\, {\varvec{\Phi }}_l^m\big \}, \end{aligned}$$
(A.6)

where we denote \(\beta _l=l(l+1),\) and have

$$\begin{aligned} u_{00}=\langle \varvec{u}, \varvec{Y}_0^0 \rangle _S,\;\;\;u_{lm}^r= \langle \varvec{u}, \varvec{Y}_l^m \rangle _S, \;\;\; u_{lm}^{(1)}= {\beta _l^{-1}}\langle \varvec{u}, \varvec{\Psi }_{l}^m \rangle _S, \;\;\; u_{lm}^{(2)}= {\beta _l^{-1}}\langle \varvec{u}, {\varvec{\Phi }}_l^m\rangle _S. \end{aligned}$$
(A.7)

It is noteworthy that given \(\varvec{u}\), we can be computed \(\{u_{lm}^r, u_{lm}^{(1)}, u_{lm}^{(2)}\}\) via the discrete VSH-transform using the Spherepack [37], and vice versa by the inverse transform. Moreover, the normal component solely involves the first term while the tangential component \(\varvec{E}_T\) of \(\varvec{E}\) involves the last two terms in (A.6).

Now, we collect some frequently used vector calculus formulas. Define the differential operators:

$$\begin{aligned} d_l^{\pm }=\frac{d}{dr}\pm \frac{l}{r}, \quad {\hat{\partial }}_r=\frac{d}{dr}+\frac{1}{r}, \quad {{\mathcal {L}}}_l={\hat{\partial }}_r^2-\frac{\beta _l}{r^2}=\frac{d^2}{dr^2}+\frac{2}{r}\frac{d}{dr} -\frac{\beta _l}{r^2}, \end{aligned}$$
(A.8)

where \(\beta _l:=l(l+1)\). For any given f(r), the following properties can be derived from [15]:

  • For divergence operator

    $$\begin{aligned} {\mathrm{div}}\big (f \varvec{Y}_{l}^m\big )=\Big (\frac{d}{dr}+\frac{2}{r}\Big ) f\,Y_l^m,\quad {\mathrm{div}}\big (f \varvec{\Psi }_{l}^m\big )=-\beta _l\frac{f}{r} \,\varvec{Y}_l^m,\quad {\mathrm{div}}\big (f \varvec{\Phi }_{l}^m\big )=0; \end{aligned}$$
    (A.9)
  • For curl operator

    $$\begin{aligned} \nabla \times \big (f \varvec{Y}_l^m \big )=\frac{f}{r} \,\varvec{\Phi }_l^m,\quad \nabla \times \big (f \varvec{\Psi }_{l}^m\big )=-{\hat{\partial }}_r f \,\varvec{\Phi }_l^m, \quad \nabla \times \big (f \varvec{\Phi }_l^m\big )={\hat{\partial }}_r f \,\varvec{\Psi }_{l}^m+\beta _l\frac{f}{r} \varvec{Y}_l^m; \end{aligned}$$
    (A.10)
  • For Laplace operator

    $$\begin{aligned} \Delta \big (f{\varvec{\Phi }}_l^m\big )={{\mathcal {L}}}_{l}(f){\varvec{\Phi }}_l^m. \end{aligned}$$
    (A.11)

Appendix B. Proof of Proposition 3.2

Proof

Recall that if \({\mathrm{div}} {\varvec{u}}=0,\) then \( \nabla \times \nabla \times {\varvec{u}}=-\Delta {\varvec{u}}. \) Thus, from (A.8)–(A.11), we derive

$$\begin{aligned}&\nabla \times \nabla \times \big ( u{\varvec{\Phi }}_l^m\big )=-\Delta \big ( u {\varvec{\Phi }}_l^m\big )=-{\mathcal {L}}_l(u){\varvec{\Phi }}_l^m,\\&\nabla \times \nabla \times \nabla \times \big ( v {\varvec{\Phi }}_l^m\big )=-\nabla \times \big ( \Delta \big ( v {\varvec{\Phi }}_l^m\big ) \big )=-\nabla \times \big ( {\mathcal {L}}_l\big (v\big ){\varvec{\Phi }}_l^m\big ). \end{aligned}$$

Therefore, (3.28a) can be reduced to:

$$\begin{aligned} \frac{\partial ^2u^i_{lm}}{\partial t^2}-c^2{\mathcal {L}}_l( u^i_{lm} )=f_{1,l}^{i,m}\quad \frac{\partial ^2v^i_{lm}}{\partial t^2}-c^2{\mathcal {L}}_l( v^i_{lm} )=f_{2,l}^{i,m}, \quad r\in I_i,\quad i=0, 2, 3, \end{aligned}$$
(B.1)

for \(|m|\le l\), \(l=1, 2, \cdots \), by using the expansions (3.32).

In spherical coordinates (cf. [1]):

$$\begin{aligned} \nabla \times {\varvec{v}}= \frac{1}{r\sin \theta }\Big ( \frac{\partial \big (\sin \theta v_\varphi \big )}{\partial \theta } -\frac{\partial v_\theta }{\partial \varphi }\Big ){\varvec{e}}_r+ \frac{1}{r} \Big (\frac{1}{\sin \theta } \frac{\partial v_r}{\partial \varphi }- \frac{\partial \big (r v_\varphi \big )}{\partial r} \Big ){\varvec{e}}_\theta +\frac{1}{r} \Big (\frac{\partial \big (r v_\theta \big )}{\partial r}-\frac{\partial v_r}{\partial \theta } \Big ){\varvec{e}}_\varphi , \end{aligned}$$
(B.2)

for any vector field \(\varvec{v}=v_r{\varvec{e}}_r+v_{\theta }{\varvec{e}}_\theta +v_{\varphi }{\varvec{e}}_\varphi \). Apparently, we have \(\nabla \times (u_{00}^i(r, t)\varvec{Y}_0^0)=\varvec{0},\) as \(\varvec{Y}_0^0={\varvec{e}}_r/\sqrt{4\pi }\). For the coefficient \(u_{00}^i\), we then have

$$\begin{aligned} \frac{\partial ^2u_{00}^i}{\partial t^2}=f_{00}^i,\quad r\in I_i,\quad i=0, 2, 3. \end{aligned}$$
(B.3)

We now turn to the governing equation (3.28b) in the cloaking layer \(I_1=(R_1,R_2)\). According to (A.10), the vector spherical harmonic expansion of \(\varvec{D}^1\) can be rewritten as

$$\begin{aligned} {\varvec{D}}^1=u_{00}^1\varvec{Y}_0^0+\sum _{l=1}^\infty \sum _{|m|=0}^l \Big \{ u_{lm}^1\varvec{\Phi }_l^m+ {\hat{\partial }}_r v_{lm}^1 \varvec{\Psi }_{l}^m+\frac{\beta _l}{r}v_{lm}^1 \varvec{Y}_{l}^m \Big \}. \end{aligned}$$
(B.4)

Using (B.4) and the fact that \({\mathscr {D}}_1\) defined in (3.9) is uniaxial, we have

$$\begin{aligned} {\mathscr {D}}_1[{\varvec{D}}^1]=\big (u_{00}^1+\theta _1*u_{00}^1\big )\varvec{Y}_{0}^0+\sum _{l=1}^\infty \sum _{|m|=0}^l\Big \{\epsilon ^{-1}u_{lm}^1\varvec{\Phi }_l^m+\epsilon ^{-1}{\hat{\partial }}_r v_{lm}^1 \varvec{\Psi }_{l}^m +\frac{\beta _l}{r}\big (v_{lm}^1+\theta _1*v_{lm}^1\big )\varvec{Y}_{l}^m\Big \}. \end{aligned}$$
(B.5)

Using formula (B.2), we have

$$\begin{aligned} \nabla \times \Big (\big (u_{00}^1+\theta _1*u_{00}^1\big )\varvec{Y}_{0}^0\Big )=\varvec{0}. \end{aligned}$$
(B.6)

Then, we calculate from (B.5) that

$$\begin{aligned} \begin{aligned} \nabla \times \big ({\mathscr {D}}_1[{\varvec{D}}^1 ] \big )=&\sum _{l=1}^\infty \sum _{|m|=0}^l\Big (\frac{\beta _l}{r^2}\big (v_{lm}^1+\theta _1*v_{lm}^1\big )-\epsilon ^{-1} {\hat{\partial }}_r^2 v_{lm}^1\Big )\varvec{\Phi }_l^m\\&+\sum _{l=1}^\infty \sum _{|m|=0}^l\Big (\epsilon ^{-1} {\hat{\partial }}_ru_{lm}^1 \varvec{\Psi }_{l}^m+\epsilon ^{-1}\frac{\beta _l}{r}u_{lm}^1\varvec{Y}_{l}^m\Big ) \end{aligned} \end{aligned}$$
(B.7)

by using formulas (A.10). Repeating the above calculation and using the definition of \({\mathscr {D}}_2\) and (A.10), we obtain

$$\begin{aligned} \begin{aligned}&\nabla \times \big ( {\mathscr {D}}_2\big [\nabla \times \big ({\mathscr {D}}_1[{\varvec{D}}^1] \big )\big ] \big )=\sum _{l=1}^\infty \sum _{|m|=0}^l\epsilon ^{-1}\Big ( \frac{\beta _l}{r^2}(u_{lm}^1+\theta _2*u_{lm}^1)-\epsilon ^{-1}{\hat{\partial }}_r^2 u_{lm}^1 \Big )\varvec{\Phi }_l^m\\&\quad +\sum _{l=1}^\infty \sum _{|m|=0}^l\epsilon ^{-1}\nabla \times \Big (\Big ( \frac{\beta _l}{r^2}(v_{lm}^1+\theta _1*v_{lm}^1)- \epsilon ^{-1}{\hat{\partial }}_r^2 v_{lm}^1 \Big )\varvec{\Phi }_l^m \Big ), \end{aligned} \end{aligned}$$
(B.8)

Inserting the above equation into (3.28b), one immediately shows that the expansion coefficients \(\{u_{lm}^1\), \(v_{lm}^1\}, |m|\le l, l=1, 2, \cdots \) satisfy the same governing equation (3.40b) with different convolution kernels \(\theta _2\) and \(\theta _1\), respectively. As in (B.3), \(u_{00}^1\) satisfies the same differential equation.

According to (B.4) and (B.5) and the facts

$$\begin{aligned} \varvec{\Psi }_l^m\times \varvec{e}_r=\varvec{\Phi }_l^m,\quad \varvec{\Phi }_l^m\times \varvec{e}_r=-\varvec{\Psi }_l^m, \end{aligned}$$
(B.9)

we have

$$\begin{aligned} \begin{aligned}&{\varvec{D}}^i\times \varvec{e}_r= \sum _{l=1}^\infty \sum _{|m|=0}^l\big (-u_{lm}^i\varvec{\Psi }_l^m+ {\hat{\partial }}_r v_{lm}^i \varvec{\Phi }_{l}^m\big ),\quad i=0, 2,3,\\&\quad (\nabla \times {\varvec{D}}^i)\times \varvec{e}_r= \sum _{l=1}^\infty \sum _{|m|=0}^l\Big \{ \Big ({\hat{\partial }}_r^2 v_{lm}^i- \frac{\beta _l}{r^2}v_{lm}^i\Big )\varvec{\Psi }_l^m+\hat{\partial }_ru_{lm}^i \varvec{\Phi }_{l}^m\Big \},\quad i=0, 2,3, \end{aligned} \end{aligned}$$
(B.10)

and

$$\begin{aligned} \begin{aligned}&{\mathscr {D}}_1[{\varvec{D}}^1]\times \varvec{e}_r=\sum _{l=1}^\infty \sum _{|m|=0}^l\big (-\epsilon ^{-1}u_{lm}^1\varvec{\Psi }_l^m+\epsilon ^{-1}{\hat{\partial }}_r v_{lm}^1 \varvec{\Phi }_{l}^m\big ),\\&\quad \big (\nabla \times ({\mathscr {D}}_1[{\varvec{D}}^1])\big )\times \varvec{e}_r= \sum _{l=1}^\infty \sum _{|m|=0}^l\Big \{\Big (\epsilon ^{-1} {\hat{\partial }}_r^2 v_{lm}^1- \frac{\beta _l}{r^2}\big (v_{lm}^1+\theta _1*v_{lm}^1\big )\Big )\varvec{\Psi }_l^m +\epsilon ^{-1} {\hat{\partial }}_ru_{lm}^1 \varvec{\Phi }_{l}^m\Big \}. \end{aligned} \end{aligned}$$

Substituting the above equations into jump condition (3.28c) and (3.28d), we obtain jump conditions

$$\begin{aligned} \begin{aligned} \epsilon u_{lm}^0=u_{lm}^1,\quad \partial _r v_{lm}^1=\epsilon \partial _r v_{lm}^0+(\epsilon -1)r^{-1}v_{lm}^0 \quad {\mathrm{at}}\;\;\; r=R_1,\\ \epsilon u_{lm}^2=u_{lm}^1,\quad \partial _r v_{lm}^1=\epsilon \partial _r v_{lm}^2+(\epsilon -1)r^{-1}v_{lm}^2 \quad {\mathrm{at}}\;\;\; r=R_2, \end{aligned} \end{aligned}$$
(B.11)

and

$$\begin{aligned} \partial _r u_{lm}^1=\epsilon ^2 \partial _r u_{lm}^0+\epsilon (\epsilon -1)r^{-1}u_{lm}^0 \quad {\mathrm{at}}\;\;\; r=R_1, \end{aligned}$$
(B.12)
$$\begin{aligned} \partial _r u_{lm}^1=\epsilon ^2 \partial _r u_{lm}^2+\epsilon (\epsilon -1)r^{-1}u_{lm}^2 \quad {\mathrm{at}}\;\;\; r=R_2, \end{aligned}$$
(B.13)
$$\begin{aligned} {\hat{\partial }}_r^2 v_{lm}^0- \frac{\beta _l}{r^2}v_{lm}^0=\epsilon ^{-2} {\hat{\partial }}_r^2 v_{lm}^1- \frac{\beta _l}{\epsilon r^2}\big (v_{lm}^1+\theta _1*v_{lm}^1\big ) \quad {\mathrm{at}}\;\;\; r=R_1, \end{aligned}$$
(B.14)
$$\begin{aligned} {\hat{\partial }}_r^2 v_{lm}^2- \frac{\beta _l}{r^2}v_{lm}^2=\epsilon ^{-2} {\hat{\partial }}_r^2 v_{lm}^1- \frac{\beta _l}{\epsilon r^2}\big (v_{lm}^1+\theta _1*v_{lm}^1\big ) \quad {\mathrm{at}}\;\;\; r=R_2. \end{aligned}$$
(B.15)

Noting that \(\hat{\partial }_r^2u=\frac{1}{r^2}\frac{\partial }{\partial r}\big (r^2\frac{\partial u}{\partial r}\big )\), the governing equations (3.40a) and (3.40b) then gives

$$\begin{aligned} \begin{aligned} \epsilon ^{-2} {\hat{\partial }}_r^2 v_{lm}^1- \frac{\beta _l}{\epsilon r^2}\big (v_{lm}^1+\theta _1*v_{lm}^1\big )=\frac{1}{c^2}\frac{\partial ^2v^1_{lm}}{\partial t^2},\quad {\hat{\partial }}_r^2 v_{lm}^i- \frac{\beta _l}{r^2}v_{lm}^i=\frac{1}{c^2}\frac{\partial ^2v^i_{lm}}{\partial t^2}, \end{aligned} \end{aligned}$$
(B.16)

for \(i=0, 2, 3.\) Substituting (B.16) into the jump conditions (B.14) and (B.15) and integrate w.r.t. t and using homogeneous initial conditions (3.40g), we derive

$$\begin{aligned} v^0_{lm}=v^1_{lm}\quad {\mathrm{at}}\;\;\; r=R_1; \quad v^2_{lm}=v^1_{lm}\quad {\mathrm{at}}\;\;\; r=R_2. \end{aligned}$$
(B.17)

Note that the jump conditions at artificial interface \(r=R_3\) are trivial. Thus, we consider the boundary condition at \( r=b\).

Applying expansion (3.32) in (3.28f) and using identities (B.9), (B.10) and formulation (3.37), we obtain

$$\begin{aligned} \begin{aligned}&\sum _{l=1}^\infty \sum _{|m|=0}^l \!\Big (\partial _t{\hat{\partial }}_r v_{lm}^3+c\Big ({\hat{\partial }}_r^2 v_{lm}^3- \frac{\beta _l}{b^2}v_{lm}^3\Big )-\frac{c}{b^2}\omega _l*v_{lm}^{3}\Big )\varvec{\Psi }_l^m\\&\quad +\sum _{l=1}^\infty \sum _{|m|=0}^l\!\Big (\partial _tu_{lm}^3+c\hat{\partial }_ru_{lm}^3 -\frac{c}{b}\sigma _l*u_{lm}^{3}\Big )\varvec{\Phi }_{l}^m=\varvec{0}, \end{aligned} \end{aligned}$$
(B.18)

which implies two boundary conditions

$$\begin{aligned} \frac{1}{c}\partial _tu_{lm}^3+\frac{{\partial }u_{lm}^3}{\partial r}+\frac{1}{b}u_{lm}^3 -\frac{1}{b}\sigma _l*u_{lm}^{3}=0\quad {\mathrm{at}}\;\; r=b, \end{aligned}$$
(B.19)
$$\begin{aligned} \frac{\partial }{\partial r}\frac{\partial v_{lm}^3}{\partial t}+\frac{1}{b}\frac{\partial v_{lm}^3}{\partial t}+c\Big ({\hat{\partial }}_r^2 v_{lm}^3- \frac{\beta _l}{b^2}v_{lm}^3\Big )-\frac{c}{b^2}\omega _l*v_{lm}^{3}=0\quad {\mathrm{at}}\;\; r=b. \end{aligned}$$
(B.20)

Here, the definition of differential operator \(\hat{\partial }\) in (A.8) is applied. Obviously, the boundary condition for \(u_{lm}^3\) is exactly the one we adopted in the model problem (3.40). Next, we will show that the equation (B.20) can be reformulated to the same form as (B.19). Indeed, we can directly calculate

$$\begin{aligned} \frac{c}{b^2}\omega _l(t)*v_{lm}^3(b, t)=\frac{1}{b}\bigg (\int _0^t\sigma _l'(t-\tau )v_{lm}^3(b, \tau )\,d\tau +\sigma _l(0)v_{lm}^3(b, t)\bigg )=\frac{1}{b}\partial _t(\sigma _l*v_{lm}^3(b,t)), \end{aligned}$$
(B.21)

by using the expression of \(\omega _l(t)\) (2.36). Using the above equation and (B.16) in (B.20) gives

$$\begin{aligned} \frac{\partial }{\partial t}\Big \{\frac{ \partial v_{lm}^3}{\partial r}+\frac{1}{b}v_{lm}^3+\frac{1}{c}\frac{\partial v_{lm}^3}{\partial t}-\frac{1}{b}\sigma _l*v_{lm}^{3}\Big \}=0\quad {\mathrm{at}}\;\; r=b. \end{aligned}$$
(B.22)

Consequently, we obtain boundary condition (3.40f) by the zero initial data assumption.

Note that the initial boundary value problems for coefficients \(u_{lm}^i\) and \(v_{lm}^i\) have almost the same form except the interface conditions (B.11)–(B.13) and (B.17). Apparently, by introducing the variable substitution (3.39), \(\{{\widetilde{u}}_{lm}^i\}\) satisfy the same governing equation as \(\{u_{lm}^i\) and the same interface and boundary conditions as \(v_{lm}^i\). \(\square \)

Appendix C. Normalisation of Maxwell’s Equations

Let us discuss the normalization of the Maxwell’s equations (1.1). Given the characteristic length \(L_c\) and time \(t_c\), we define dimensionless variables \(\underline{\varvec{r}}\) and \({\underline{t}}\) such that

$$\begin{aligned} \varvec{r}=(x, y, z)=L_c\underline{\varvec{r}}=(L_c{\underline{x}}, L_c{\underline{y}}, L_c{\underline{z}}), \quad t={\underline{t}}/t_c. \end{aligned}$$

Then we have

$$\begin{aligned} \partial _t=t_c\partial _{{\underline{t}}},\quad \nabla =\frac{1}{L_c}\underline{\nabla }:=\frac{1}{L_c}(\partial _{{\underline{x}}},\partial _{{\underline{y}}}, \partial _{{\underline{z}}} )^{\top } \end{aligned}$$

and (1.1) can be transformed to

figure h

where

(C.2)

For simplicity, we consider the electromagnetic wave in the vacumm, i.e., \(\underline{\varvec{D}}=\varepsilon _0\underline{\varvec{E}}\) and \(\underline{\varvec{B}}=\mu _0\underline{\varvec{H}}\). From (C.1), we have

figure i

Let \(L_c=1m\) and \(t_c=1/\sqrt{\varepsilon _0\mu _0}\approx 2.9979e{+}7\). With a little abuse of notation, we still use the notation \(\underline{\varvec{H}}({\underline{r}}, {\underline{t}})\) for scaled magnetic field \(\sqrt{\frac{\mu _0}{\varepsilon _0}}\underline{\varvec{H}}({\underline{r}}, {\underline{t}})\). Then, we obtain the dimensionless Maxwell’s equations:

figure j

from (C.3).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Yang, Z., Wang, LL. et al. On Time-Domain NRBC for Maxwell’s Equations and Its Application in Accurate Simulation of Electromagnetic Invisibility Cloaks. J Sci Comput 86, 20 (2021). https://doi.org/10.1007/s10915-020-01354-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01354-2

Keywords

Navigation