Skip to main content
Log in

Optimization Modeling and Simulating of the Stationary Wigner Inflow Boundary Value Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The stationary Wigner inflow boundary value problem (SWIBVP) is modeled as an optimization problem by using the idea of shooting method in this paper. To remove the singularity at \(v=0\), we consider a regularized SWIBVP, where a regularization constraint is considered along with the original SWIBVP, and a modified optimization problem is established for it. A shooting algorithm is proposed to solve the two optimization problems, involving the limited-memory BFGS (L-BFGS) algorithm as the optimization solver. Numerical results show that solving the optimization problems with respect to the SWIBVP with the shooting algorithm is as effective as solving the SWIBVP with Frensley’s numerical method (Frensley in Phys Rev B 36:1570–1580, 1987). Furthermore, the modified optimization problem gets rid of the singularity at \(v=0\), and preserves symmetry of the Wigner function, which implies the optimization modeling with respect to the regularized SWIBVP is successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analysed during the current study are available in the figshare repository, https://figshare.com/articles/dataset/data_file_zip/13022507

References

  1. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5), 749–759 (1932)

    Article  MATH  Google Scholar 

  2. Weinbub, J., Ferry, D.K.: Recent advances in Wigner function approach. Appl. Phys. Rev. 5(4), 041104 (2018)

    Article  Google Scholar 

  3. Bardos, C., Caflisch, R.E., Nicolaenko, B.: The Milne and Kramers problems for the Boltzmann equation of a hard sphere gas. Commun. Pure Appl. Math. 39(3), 323–352 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. Coron, F.: Computation of the asymptotic states for linear half space kinetic problems. Transp. Theory Stat. Phys. 19(2), 89–114 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bobylev, A.V., Palczewski, A., Schneider, J.: On approximation of the Boltzmann equation by discrete velocity models. C. R. Acad. Sci. Paris Sér I(320), 639–644 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Palczewski, A., Schneider, J., Bobylev, A.V.: A consistency result for a discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal. 34(5), 1865–1883 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carrillo, J.A., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transient of devices: performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernhoff, N.: On half-space problems for the discrete Boltzmann equation. Il nuovo cimento C, Societa italiana di fisica 33(1), 47–54 (2010)

    MATH  Google Scholar 

  9. Hu, Z., Li, R., Lu, T., Wang, Y., Yao, W.: Simulation of an \(n^{+}\)-\(n\)-\(n^{+}\) Diode by using globally-hyperbolically-closed high-order moment models. J. Sci. Comput. 59, 761–774 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, R., Lu, T., Yao, W.: Discrete kernel preserving model for 1D optical electron–phonon scattering. J. Sci. Comput. 62(2), 317–335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, Q., Lu, J., Sun, W.: A convergent method for linear half-space kinetic equations. ESAIM Math. Model. Numer. Anal. 51(5), 1583–1615 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yao, W., Lu, T.: Discrete kernel preserving model for 3D electron-optical phonon scattering under arbitrary band structures. J. Sci. Comput. 81(3), 2213–2236 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frensley, W.R.: Wigner function model of a resonant-tunneling semiconductor device. Phys. Rev. B 36, 1570–1580 (1987)

    Article  Google Scholar 

  14. Arnold, A., Lange, H., Zweifel, P.F.: A discrete-velocity, stationary Wigner equation. J. Math. Phys. 41(11), 7167–7180 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barletti, L., Zweifel, P.F.: Parity-decomposition method for the stationary Wigner equation with inflow boundary conditions. Transp. Theory Stat. Phys. 30(4–6), 507–520 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, R., Lu, T., Sun, Z.P.: Stationary Wigner equation with inflow boundary conditions: will a symmetric potential yield a symmetric solution? SIAM J. Appl. Math. 70(3), 885–897 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, R., Lu, T., Sun, Z.P.: Parity-decomposition and moment analysis for stationary Wigner equation with inflow boundary condition. Front. Math. China 12(4), 907–919 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jensen, K.L., Buot, F.A.: Numerical simulation of intrinsic bistability and high-frequency current oscillations in resonant tunneling structures. Phys. Rev. Lett. 66, 1078–1081 (1991)

    Article  Google Scholar 

  19. Taj, D., Genovese, L., Rossi, F.: Quantum-transport simulations with the Wigner-function formalism: failure of conventional boundary-condition schemes. Europhys. Lett. 74(6), 1060–1066 (2006)

    Article  Google Scholar 

  20. Jiang, H., Lu, T., Cai, W.: A device adaptive inflow boundary condition for Wigner equations of quantum transport. J. Comput. Phys. 258, 773–786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dorda, A., Schürrer, F.: A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes. J. Comput. Phys. 284, 95–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shao, S., Lu, T., Cai, W.: Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport. Commun. Comput. Phys. 9(3), 711–739 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Furtmaier, O., Succi, S., Mendoza, M.: Semi-spectral method for the Wigner equation. J. Comput. Phys. 305, 1015–1036 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xiong, Y., Chen, Z., Shao, S.: An advective-spectral-mixed method for time-dependent many-body Wigner simulations. SIAM J. Sci. Comput. 38(4), B491–B520 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Z., Xiong, Y., Shao, S.: Numerical methods for the Wigner equation with unbounded potential. J. Sci. Comput. 79(1), 345–368 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Cai, Z., Fan, Y., Li, R., Lu, T., Wang, Y.: Quantum hydrodynamic model by moment closure of Wigner equation. J. Math. Phys. 53(10), 103503 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cai, Z., Fan, Y., Li, R., Lu, T., Yao, W.: Quantum hydrodynamic model of density functional theory. J. Math. Chem. 51(7), 1747–1771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rossi, F., Jacoboni, C., Nedjalkov, M.: A Monte Carlo solution of the Wigner transport equation. Semicond. Sci. Technol. 9(5S), 934–936 (1994)

    Article  Google Scholar 

  29. Shifren, L., Ringhofer, C., Ferry, D.K.: A Wigner function-based quantum ensemble Monte Carlo study of a resonant tunneling diode. IEEE Trans. Electron Dev. 50(3), 769–773 (2003)

    Article  Google Scholar 

  30. Stoer, J., Burlisch, R.: Introduction to Numerical Analysis. Springer, New York (1980)

    Book  Google Scholar 

  31. Lu, T., Sun, Z.P.: Singularity-free numerical scheme for the stationary Wigner equation. J. Comput. Math. 37(2), 170–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Science Foundation of China (11671038, 11801183, 11901496), Project for Hunan National Applied Mathematics Center of Hunan Provincial Science and Technology Department (2020ZYT003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqi Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Lemma 1

Proof

By the Whittaker–Shannon interpolation formula, P(v) can be reformulated as the series

$$\begin{aligned} P(v)= \sum _{n=-\infty }^{\infty } P(v_n) \frac{\sin (B(v-v_n))}{B(v-v_n)} , \end{aligned}$$
(41)

where \(\{v_n: v_n=n\varDelta v+s,\varDelta v= \pi /B, n\in {\mathbb {Z}}\}\) are uniform discrete points with a shift s.

Let \({\mathcal {F}}[\cdot ]\) and \( {\mathcal {F}}^{-1}[\cdot ]\) stand for the Fourier transform and the corresponding inverse Fourier transform respectively. Define \(g(v)= P(v)\mathbin {*} Q(v)\), then it can be written as

$$\begin{aligned} \begin{aligned} g(v)&= {\mathcal {F}}^{-1} [{\widehat{P}}(y)] \mathbin {*} {\mathcal {F}}^{-1} [{\widehat{Q}}(y)] \\&= {\mathcal {F}}^{-1}[{\widehat{P}}(y) {\widehat{Q}}(y)] \\&= {\mathcal {F}}^{-1}_{y\rightarrow v} [{\widehat{P}}(y) {\widehat{Q}}(y) \chi _{[-B,B]}(y)], \end{aligned} \end{aligned}$$
(42)

where \({\widehat{P}}(y)={\mathcal {F}}[P(v)]\), \({\widehat{Q}}(y)={\mathcal {F}}[Q(v)]\) and

$$\begin{aligned} \chi _{[-B,B]}(y)=\left\{ \begin{array}{cl} 1, &{} y\in [-B,B], \\ 0, &{} others. \end{array} \right. \end{aligned}$$

It is easy to see that \({\widehat{g}}(y)={\mathcal {F}}[g(v)]\) also has compact support on \([-B,B]\) and by the Whittaker–Shannon interpolation formula, we have

$$\begin{aligned} g(v) = \sum _{n=-\infty }^\infty g(v_n) \frac{\sin (B(v-v_n))}{B(v-v_n)}, \end{aligned}$$
(43)

Denote Q(vB) as the inverse Fourier transform of \({\widehat{Q}}(y)\chi _{[-B,B]}(y)\), i.e.,

$$\begin{aligned} Q(v;B) = \frac{1}{2\pi } \int _{-B}^{B} {\widehat{Q}}(y) e^{ivy} \,\mathrm {d}y. \end{aligned}$$

Recalling the Whittaker–Shannon interpolation formula, Q(vB) is reformulated as

$$\begin{aligned} Q(v;B) =\sum _{n=-\infty }^\infty Q({\widetilde{v}}_n;L_y) \frac{\sin (B(v-{{\widetilde{v}}}_n))}{B(v-{{\widetilde{v}}}_n)} \end{aligned}$$
(44)

where \({\widetilde{v}}_n= n\varDelta v\) and \(\varDelta v =\pi /B\).

Next, we give the value of \(g(v_n)\). Substituting (41) and (44) into the definition of \(g(v_n)\), we obtain

$$\begin{aligned} \begin{aligned} g(v_n)&= \int _{-\infty }^\infty Q(v_n-v')P(v') \,\mathrm {d}v' = \int _{-\infty }^\infty Q(v_n-v';B)P(v') \,\mathrm {d}v'\\&= \int _{-\infty }^\infty \sum _{m=-\infty }^\infty Q({\widetilde{v}}_m;B) \frac{\sin (B(v_n-v'-\widetilde{v}_m))}{B(v_n-v'-{{\widetilde{v}}}_m)} \sum _{n=-\infty }^{\infty } P(v_k) \frac{\sin (B(v'-v_k))}{B(v'-v_k)} \,\mathrm {d}v' \\&= \sum _{m=-\infty }^\infty \sum _{n=-\infty }^{\infty } Q({\widetilde{v}}_m;B) P(v_k) \int _{-\infty }^\infty \frac{\sin (B(v_{n-m}-v'))}{B(v_{n-m}-v')} \frac{\sin (B(v'-v_k))}{B(v'-v_k)} \,\mathrm {d}v' \\&= \sum _{m=-\infty }^\infty \sum _{n=-\infty }^{\infty } Q({\widetilde{v}}_m;B) P(v_k) \varDelta v \delta _{n-m,k} \\&= \sum _{k=-\infty }^\infty Q({\widetilde{v}}_{n-k};B) P(v_k) \varDelta v , \end{aligned} \end{aligned}$$

where \(\delta _{m,k}\) is the Kronecker delta function. \(\square \)

Proof of Theorem 1

Proof

If \(V(\frac{L}{2}+x) = V(\frac{L}{2}-x)\), then we have

$$\begin{aligned} V_w\left( \frac{L}{2}+x,{\widetilde{v}}_k;L_y\right) =-V_w(\frac{L}{2}-x,{\widetilde{v}}_k;L_y), \end{aligned}$$

that is to say,

$$\begin{aligned} {\varvec{W}}\left( \frac{L}{2}+x\right) = -{\varvec{W}}\left( \frac{L}{2}-x\right) . \end{aligned}$$
(45)

Now we consider a final value problem

$$\begin{aligned} \text {(FVP)}\qquad \left\{ \begin{array}{ll} {\varvec{f}}_x-{\varvec{T}}^{-1}{\varvec{W}}(x){\varvec{f}} =0, &{} 0\leqslant x\leqslant \frac{L}{2} ,\\ {\varvec{f}}(\frac{L}{2})={\varvec{h}},&{} \end{array} \right. \end{aligned}$$
(46)

and an initial value problem

$$\begin{aligned} \text {(IVP)}\qquad \left\{ \begin{array}{ll} {\varvec{f}}_x-{\varvec{T}}^{-1}{\varvec{W}}(x){\varvec{f}} =0, &{} \frac{L}{2}\leqslant x \leqslant L ,\\ {\varvec{f}}(\frac{L}{2})={\varvec{h}} .&{} \end{array} \right. \end{aligned}$$
(47)

Introduce \({\varvec{z}}(x)={\varvec{f}}(\frac{L}{2}-x)\) , and the (FVP) (46) can be transformed into an initial value problem for \({\varvec{z}}(x)\) ,

$$\begin{aligned} \left\{ \begin{array}{ll} -{\varvec{z}}_x-{\varvec{T}}^{-1}{\varvec{W}}(\frac{L}{2}-x){\varvec{z}} =0, &{} 0\leqslant x \leqslant \frac{L}{2} ,\\ {\varvec{z}}(0)={\varvec{h}} .&{} \end{array} \right. \end{aligned}$$
(48)

which is equivalent to

$$\begin{aligned} \text {(IVP*)}\qquad \left\{ \begin{array}{ll} {\varvec{z}}_x-{\varvec{T}}^{-1}{\varvec{W}}(\frac{L}{2}+x){\varvec{z}} =0, &{} 0\leqslant x \leqslant \frac{L}{2} ,\\ {\varvec{z}}(0)={\varvec{h}} .&{} \end{array} \right. \end{aligned}$$
(49)

by using the relation (45). Therefore, the (FVP) is equivalent to the (IVP*) if setting \({\varvec{z}}(x)={\varvec{f}}(\frac{L}{2}-x)\) in (46). Similarly, the (IVP) is also equivalent to the (IVP*) if setting \({\varvec{z}}(x)={\varvec{f}}(x-\frac{L}{2})\) in (47). In other word, if \(\varvec{\psi }(x)\) is a solution of the (IVP*), then the solution of the (FVP) is

$$\begin{aligned} {\varvec{f}}(x) = \varvec{\psi }\left( \frac{L}{2}-x\right) ,\qquad 0 \leqslant x \leqslant \frac{L}{2} \end{aligned}$$

and the solution of the (IVP) is

$$\begin{aligned} {\varvec{f}}(x) = \varvec{\psi }\left( \frac{L}{2}+x\right) ,\qquad \frac{L}{2} \leqslant x \leqslant L. \end{aligned}$$

It is then concluded that \({\varvec{f}}(\frac{L}{2}-x) = {\varvec{f}}(\frac{L}{2}+x)\) for all \(x\in [0,L]\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Yao, W. & Lu, T. Optimization Modeling and Simulating of the Stationary Wigner Inflow Boundary Value Problem. J Sci Comput 85, 21 (2020). https://doi.org/10.1007/s10915-020-01338-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01338-2

Keywords

Mathematics Subject Classification

Navigation