Skip to main content
Log in

Optimal Order of Uniform Convergence for Finite Element Method on Bakhvalov-Type Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a new analysis of convergence for a kth order (\(k\ge 1\)) finite element method, which is applied on Bakhvalov-type meshes to a singularly perturbed two-point boundary value problem. A novel interpolant is introduced, which has a simple structure and is easy to generalize. By means of this interpolant, we prove an optimal order of uniform convergence with respect to the perturbation parameter. Numerical experiments illustrate these theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bahvalov, N.S.: On the optimization of the methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz. 9, 841–859 (1969)

    MathSciNet  Google Scholar 

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  3. Brdar, M., Zarin, H.: A singularly perturbed problem with two parameters on a Bakhvalov-type mesh. J. Comput. Appl. Math. 292, 307–319 (2016). https://doi.org/10.1016/j.cam.2015.07.011

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-75934-0

    Book  Google Scholar 

  5. The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). https://doi.org/10.1137/1.9780898719208

  6. Kopteva, N.: On the convergence, uniform with respect to the small parameter, of a scheme with central difference on refined grids. Zh. Vychisl. Mat. Mat. Fiz. 39(10), 1662–1678 (1999)

    MathSciNet  Google Scholar 

  7. Kopteva, N., Savescu, S.B.: Pointwise error estimates for a singularly perturbed time-dependent semilinear reaction-diffusion problem. IMA J. Numer. Anal. 31(2), 616–639 (2011). https://doi.org/10.1093/imanum/drp032

    Article  MathSciNet  MATH  Google Scholar 

  8. Linß, T.: Solution decompositions for linear convection–diffusion problems. Z. Anal. Anwendungen 21(1), 209–214 (2002). https://doi.org/10.4171/ZAA/1073

    Article  MathSciNet  MATH  Google Scholar 

  9. Linß, T.: Layer-Adapted Meshes for Reaction–Convection–Diffusion problems. Lecture Notes in Mathematics, vol. 1985. Springer, Berlin (2010)

  10. Liu, X., Stynes, M., Zhang, J.: Supercloseness of edge stabilization on Shishkin rectangular meshes for convection-diffusion problems with exponential layers. IMA J. Numer. Anal. 38(4), 2105–2122 (2018). https://doi.org/10.1093/imanum/drx055

    Article  MathSciNet  MATH  Google Scholar 

  11. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. In: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, revised edn. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2012). https://doi.org/10.1142/9789814390743

  12. Nhan, T.A., Vulanovic, R.: The Bakhvalov mesh: a complete finite-difference analysis of two-dimensional singularly perturbed convection-diffusion problems. Numer. Algorithms (To appear) (2020)

  13. Roos, H., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. In: Springer Series in Computational Mathematics, vol. 24, 2nd edn. Springer, Berlin (2008)

  14. Roos, H.G.: Error estimates for linear finite elements on Bakhvalov-type meshes. Appl. Math. 51(1), 63–72 (2006). https://doi.org/10.1007/s10492-006-0005-y

    Article  MathSciNet  MATH  Google Scholar 

  15. Roos, H.G., Stynes, M.: Some open questions in the numerical analysis of singularly perturbed differential equations. Comput. Methods Appl. Math. 15(4), 531–550 (2015). https://doi.org/10.1515/cmam-2015-0011

    Article  MathSciNet  MATH  Google Scholar 

  16. Russell, S., Stynes, M.: Balanced-norm error estimates for sparse grid finite element methods applied to singularly perturbed reaction–diffusion problems. J. Numer. Math. 27(1), 37–55 (2019). https://doi.org/10.1515/jnma-2017-0079

    Article  MathSciNet  MATH  Google Scholar 

  17. Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations (in Russian). 2nd doctoral thesis, Keldysh Institute, Moscow (1990)

  18. Stynes, M., O’Riordan, E.: A uniformly convergent Galerkin method on a Shishkin mesh for a convection–diffusion problem. J. Math. Anal. Appl. 214(1), 36–54 (1997)

    Article  MathSciNet  Google Scholar 

  19. Teofanov, L., Brdar, M., Franz, S., Zarin, H.: SDFEM for an elliptic singularly perturbed problem with two parameters. Calcolo 55(4), 20 (2018). https://doi.org/10.1007/s10092-018-0293-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, J., Liu, X.: Superconvergence of finite element method for singularly perturbed convection-diffusion equations in 1D. Appl. Math. Lett. 98, 278–283 (2019). https://doi.org/10.1016/j.aml.2019.06.018

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhang, J., Liu, X., Yang, M.: Optimal order \(L^2\) error estimate of SDFEM on Shishkin triangular meshes for singularly perturbed convection-diffusion equations. SIAM J. Numer. Anal. 54(4), 2060–2080 (2016). https://doi.org/10.1137/15M101035X

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, J., Stynes, M.: Supercloseness of continuous interior penalty method for convection-diffusion problems with characteristic layers. Comput. Methods Appl. Mech. Eng. 319, 549–566 (2017). https://doi.org/10.1016/j.cma.2017.03.013

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees for their valuable comments and suggestions that led us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by National Natural Science Foundation of China (11771257, 11601251), Shandong Provincial Natural Science Foundation, China (ZR2017MA003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, X. Optimal Order of Uniform Convergence for Finite Element Method on Bakhvalov-Type Meshes. J Sci Comput 85, 2 (2020). https://doi.org/10.1007/s10915-020-01312-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01312-y

Keywords

Mathematics Subject Classification

Navigation