Skip to main content
Log in

Highly Accurate Global Padé Approximations of Generalized Mittag–Leffler Function and Its Inverse

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The two-parametric Mittag–Leffler function (MLF), \(E_{\alpha ,\beta }\), is fundamental to the study and simulation of fractional differential and integral equations. However, these functions are computationally expensive and their numerical implementations are challenging. In this paper, we present a unified framework for developing global rational approximants of \(E_{\alpha ,\beta }(-x)\), \(x>0\), with \(\{ (\alpha ,\beta ): 0 < \alpha \le 1, \beta \ge \alpha , (\alpha ,\beta ) \ne (1,1) \}\). This framework is based on the series definition and the asymptotic expansion at infinity. In particular, we develop three types of fourth-order global rational approximations and discuss how they could be used to approximate the inverse function. Unlike existing approximations which are either limited to MLF of one parameter or of low accuracy for the two-parametric MLF, our rational approximants are of fourth order accuracy and have low percentage error globally. For efficient utilization, we study the partial fraction decomposition and use them to approximate the two-parametric MLF with a matrix argument which arise in the solutions of fractional evolution differential and integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Atkinson, C., Osseiran, A.: Rational solutions for the time-fractional diffusion equation. SIAM J. Appl. Math. 71(1), 92–106 (2011)

    Article  MathSciNet  Google Scholar 

  2. Bertaccini, D., Popolizio, M., Durastante, F.: Efficient approximation of functions of some large matrices by partial fraction expansions. Int. J. Comput. Math. 96(9), 1799–1817 (2019)

    Article  MathSciNet  Google Scholar 

  3. Borhanifar, A., Valizadeh, S.: Mittag–Leffler–Padé approximations for the numerical solution of space and time fractional di usion equations. Int. J. Appl. Math. Res. 4(4), 466 (2015)

    Article  Google Scholar 

  4. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  5. Freed, A., Dielthelm, K., and Luchko, Y.: Frcational-order viscoelasticity (FOV): constitutive development using the fractional calculus: First annual report. NASA/TM-20020211914, Gleen Research Center, Cleveland, OH (2002)

  6. Furati, K.M., Yousuf, M., Khaliq, A.: Fourth-order methods for space fractional reaction-diffusion equations with non-smooth data. Int. J. Comput. Math. 95(6–7), 1240–1256 (2018)

    Article  MathSciNet  Google Scholar 

  7. Garappa, R., Popolizio, M.: Generalized exponential time differencing methods for fractional order problems. Comput. Math. Appl. 62, 876–890 (2011)

    Article  MathSciNet  Google Scholar 

  8. Garrappa, R.: Numerical evalution of two and three parameter Mittag–Leffler functions. SIAM J. Numer. Anal. 53(3), 1350–1369 (2015)

    Article  MathSciNet  Google Scholar 

  9. Garrappa, R., Popolizio, M.: Computing the matrix Mittag–Leffler function with applications to fractional calculus. J. Sci. Comput. 77(1), 129–153 (2018)

    Article  MathSciNet  Google Scholar 

  10. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag–Leffler Functions. Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  11. Gorenflo, R., Loutchko, J., Luchko, Y.: Computation of the Mittag–Leffler function \(E_{\alpha,\beta }(z)\) and its derivative. Fract. Calc. Appl. Anal. 5(4), 491–518 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Hanneken, J.W., Achar, B.N.N.: Finite series representation of the inverse Mittag–Leffler function. Math. Probl. Eng. 2014(252393), 18 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Hilfer, R., Seybold, H.J.: Computation of the generalized Mittag–Leffler function and its inverse in the complex plane. Integral Transforms Spec. Funct. 17(9), 637–652 (2006)

    Article  MathSciNet  Google Scholar 

  14. Ingo, C., Barrick, T.R., Webb, A.G., Ronen, I.: Accurate Padé global approximations for the Mittag–Leffler function, its inverse, and its partial derivatives to efficiently compute convergent power series. Int. J. Appl. Comput. Math. 3(2), 347–362 (2017)

    Article  MathSciNet  Google Scholar 

  15. Iyiola, O.S., Asante-Asamani, E.O., Wade, B.A.: A real distinct poles rational approximation of generalized Mittag–Leffler functions and their inverses: applications to fractional calculus. J. Comput. Appl. Math. 330, 307–317 (2018)

    Article  MathSciNet  Google Scholar 

  16. Kilbas, A., Srivastava, H., Trujullo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    Google Scholar 

  17. Liang, Y.: Diffusion entropy method for ultraslow diffusion using inverse Mittag–Leffler function. Fract. Calc. Appl. Anal. 21, 105–117 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Mainardi, F., Pironi, P., Tampieri, F.: On a generalization of basset problem via fractional calculus. In: Proceedings of the 15th Canadian Congress of Applied Mechanics, Victoria, BC, Canada, 28 May–1 June, vol. 2, pp. 836–837 (1995)

  19. Minchev, B., Wright, W.: A review of exponential integrators for first order semi-linear problems. Technical Report 2/05, Department of Mathematics, NTNU, (2005)

  20. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  21. Popolizio, M.: Numerical solution of multiterm fractional differential equations using the matrix Mittag–Leffler functions. Mathematics 6(1), 7 (2018)

    Article  MathSciNet  Google Scholar 

  22. Sadeghi, A., Cardoso, J.R.: Some notes on properties of the matrix Mittag–Leffler function. Appl. Math. Comput. 338, 733–738 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Starovoitov, A.P., Starovoitova, N.A.: Padé approximants of the Mittag–Leffler functions. Sbornik Math. 198(7), 1011–1023 (2007)

    Article  MathSciNet  Google Scholar 

  24. Winitzki, S.: Uniform approximations for transcendental functions. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) Computational Science and Its Applications—ICCSA 2003, pp. 780–789. Springer, Berlin (2003)

    Chapter  Google Scholar 

  25. Zeng, C., Chen, Y.Q.: Global padé approximations of the generalized Mittag–Leffler function and its inverse. Fract. Calc. Appl. Anal. 18(6), 1492–1506 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled M. Furati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarumi, I.O., Furati, K.M. & Khaliq, A.Q.M. Highly Accurate Global Padé Approximations of Generalized Mittag–Leffler Function and Its Inverse. J Sci Comput 82, 46 (2020). https://doi.org/10.1007/s10915-020-01150-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01150-y

Keywords

Navigation