Skip to main content
Log in

A New Hybrid Staggered Discontinuous Galerkin Method on General Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel high-order hybrid staggered discontinuous Galerkin method for general meshes is proposed to solve general second order elliptic problems. Our new formulation is related to standard staggered discontinuous Galerkin method, but more flexible and cost effective: rough grids are allowed and the size of the final system is remarkably reduced thanks to the partial hybridization. Optimal convergence estimates for both the scalar and vector variables are developed. Moreover, superconvergent results with respect to discrete \(H^1\) norm and \(L^2\) norm for the scalar variable are proved and negative norm error estimates for both the scalar and vector variables are also developed. On the other hand, mesh adaptation is particularly simple since hanging nodes are allowed, which makes the proposed method well suited for adaptive mesh refinement. Therefore, we design a residual type a posteriori error estimator, and the reliability and local efficiency of the error estimator are proved. Numerical experiments confirm the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Achdou, Y., Bernardi, C., Coquel, F.: A priori and a posteriori analysis of finite volume discretization of Darcy’s equations. Numer. Math. 96, 17–42 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M.: A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements. SIAM J. Sci. Comput. 30, 189–204 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antonietti, P.F., Beirão da Veiga, L., Lovadina, C., verani, M.: Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal 51, 654–675 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6, 319–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7–32 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element method. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beirão da Veiga, L., Manzini, G.: Residual a posteriori error estimator for the virtual element method for elliptic problems. ESAIM Math. Model. Numer. Anal. 49, 577–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cangiani, A., Georgoulis, E.H., Pryer, T., Sutton, O.J.: A posteriori error estimates for the virtual element method. Numer. Math. 137, 857–893 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comp. 66, 465–476 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Carstensen, C., Kim, D., Park, E.-J.: A priori and a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer. Anal. 49, 2501–2523 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen, C., Park, E.-J.: Convergence and optimality of adaptive least squares finite element methods. SIAM J. Numer. Anal. 53, 43–62 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chung, E.T., Du, J., Lam, C.Y.: Discontinuous Galerkin methods with staggered hybridization for linear elastodynamics. Comput. Math. Appl. 74, 1198–1214 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44, 2131–2158 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47, 3820–3848 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chung, E.T., Park, E.-J., Zhao, L.: Guaranteed a posteriori error estimates for a staggered discontinuous Galerkin method. J. Sci. Comput. 75, 1079–1101 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing, Amsterdam (1978)

    MATH  Google Scholar 

  18. Cockburn, B., Dong, B., Guzmán, J.: A Superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp. 77, 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and conforming Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Douglas Jr., J., Roberts, J.E.: Mixed finite elements for second order elliptic problems. Mat. Apl. Comput. 1, 91–103 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Douglas Jr., J., Roberts, J.E.: Global estimates for mixed methods for second order elliptic problems. Math. Comp. 44, 39–52 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ern, A., Vohralík, M.: Flux reconstruction and a posteriori error estimation for discontinuous Galerkin methods on general nonmatching grids. C. R. Math. Acad. Sci. Paris 347, 441–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ern, A., Vohralík, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53, 1058–1081 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  25. Hu, J., Xu, J.: Converence and optimality of the adaptive nonconforming linear element method for the Stokes equation. J. Sci. Comput. 55, 125–148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jeon, Y., Park, E.-J.: A hybrid discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 48(5), 1968–1983 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jeon, Y., Park, E.-J.: New locally conservative finite element methods on a rectangular mesh. Numer. Math. 123, 97–119 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jeon, Y., Park, E.-J., Sheen, D.: A hybridized finite element method for the Stokes problem. Comput. Math. Appl. 68, 2222–2232 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kim, K.Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76, 43–66 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kim, D., Park, E.-J.: A posteriori error estimator for expanded mixed hybrid methods. Numer. Methods Partial Differ. Equ. 23, 330–349 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim, M.-Y., Park, E.-J., Thomas, S.G., Wheeler, M.F.: A multiscale mortar mixed finite element method for slightly compressible flows in porous media. J. Korean Math. Soc. 44(5), 1103–1119 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kim, M.-Y., Wheeler, M.F.: A multiscale discontinuous galerkin method for convection–diffusion–reaction problems. Comput. Math. Appl. 68(12), 2251–2261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Milner, F.A., Park, E.-J.: A mixed finite element method for a strongly nonlinear second-order elliptic problem. Math. Comput. 64, 973–988 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  35. Morin, P., Nochetto, R.H., Siebert, K.G.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Park, E.-J.: Mixed finite element methods for nonlinear second-order elliptic problems. SIAM J. Numer. Anal. 32, 865–885 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Süli, E., Schwab, C., Houston, P.: hp-DGFEM for partial differential equations with nonnegative characteristic form. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.) Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 221–230. Springer, Berlin (2000)

    Chapter  Google Scholar 

  39. Synge, J.L.: The hypercircle in Mathematical Physics: A method for the Approximate Solution of Boundary Value Problems. Cambridge University Press, New York (1957)

    Book  MATH  Google Scholar 

  40. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques. Teubner-Wiley, Stuttgart (1996)

    MATH  Google Scholar 

  41. Vohralík, M.: Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous doefficients. J. Sci. Comput. 46, 397–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao, L., Park, E.-J.: Fully computable bounds for a staggered discontinuous Galerkin method for the Stokes equations. Comput. Math. Appl. 75, 4115–4134 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, L., Park, E.-J.: A staggered discontinuous Galerkin method of minimal dimension on quadrilateral and polygonal meshes. SIAM J. Sci. Comput. 40, 2543–2567 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, L., Park, E.-J., Shin, D.-W.: A staggered DG method of minimal dimension for the Stokes equations on general meshes. Comput. Methods Appl. Mech. Eng. 345, 854–875 (2019)

    Article  MathSciNet  Google Scholar 

  45. Zhao, L., Park, E.-J.: A lowest order staggered DG method for the coupled Stokes–Darcy problem, IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drz048

Download references

Acknowledgements

Most of the work has been done while LZ was at Yonsei University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Jae Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Eun-Jae Park was supported by NRF-2015R1A5A1009350 and NRF-2019R1A2C2090021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Park, EJ. A New Hybrid Staggered Discontinuous Galerkin Method on General Meshes. J Sci Comput 82, 12 (2020). https://doi.org/10.1007/s10915-019-01119-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-019-01119-6

Keywords

Navigation