Skip to main content
Log in

New locally conservative finite element methods on a rectangular mesh

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

A new family of locally conservative, finite element methods for a rectangular mesh is introduced to solve second-order elliptic equations. Our approach is composed of generating PDE-adapted local basis and solving a global matrix system arising from a flux continuity equation. Quadratic and cubic elements are analyzed and optimal order error estimates measured in the energy norm are provided for elliptic equations. Next, this approach is exploited to approximate Stokes equations. Numerical results are presented for various examples including the lid driven-cavity problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Antonietti, P.F., Brezzi, F., Marini, L.D.: Stabilizations of the Baumann–Oden DG formulation: the 3D case. Boll. Unione Mat. Ital. (9) 1(3), 629–643 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. Modél. Math. Anal. Numér. 19, 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Arnold, D., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1740–1779 (2002)

    Article  MathSciNet  Google Scholar 

  6. Baumann, C.E., Oden, J.T.: A discontinuous \(hp\) finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng 175(3–4), 311–341 (1999)

    Google Scholar 

  7. Brezzi, F., Marini, L.D.: Bubble stabilization of discontinuous Galerkin methods. In: Fitzgibbon, W., Hoppe, R., Periaux, J., Pironneau, O., Vassilevski, Y. (eds.) Advances in Numerical Mathematics. Proceedings of the International Conference on the Occasion of the 60th Birthday of Y.A. Kuznetsov. Institute of Numerical Mathematics of the Russian Academy of Sciences, Moscow, pp. 25–36 (2006)

  8. Cockburn, B., Gopalakrishnan, J.: Chracerization of hybrid mixed methods for second order elliptic problems. SIAM J. Numer. Anal. 42, 283–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Güzey, S., Cockburn, B., Stolarski, H.K.: The embedded discontinuous Galerkin method: application to linear shell problems. Int. J. Numer. Methods Eng. 70(7), 757–790 (2007)

    Article  MATH  Google Scholar 

  11. Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer Texts in Applied Mathematics, vol. 54. Springer, New York (2008)

  12. Jeon, Y.: A multiscale cell boundary element method for elliptic problems. Appl. Numer. Math 59(11), 2801–2813 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jeon, Y., Park, E.-J.: Nonconforming cell boundary element methods for elliptic problems on triangular mesh. Appl. Numer. Math. 58, 800–814 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeon, Y., Park, E.-J.: A hybrid discontinuous Galerkin method for elliptic problems. SINUM 48, 1968–1983 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Jeon, Y., Park, E.-J., Sheen, D.: A cell boundary element method for elliptic problems. Numer. Methods Partial Differ. Equ. 21, 496–511 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jeon, Y., Sheen, D.: Analysis of a cell boundary element method. Adv. Comput. Math. 22(3), 201–222 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tong, P.: New displacement hybrid finite element models for solid continua. Int. J. Numer. Methods Eng. 2, 73–83 (1970)

    Article  MATH  Google Scholar 

  19. Riviére, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems I. Comput. Geosci. 3, 337–360 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SINUM 39(3), 902–931 (2001)

    MATH  Google Scholar 

  21. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SINUM 15, 152–161 (1978)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere thanks to anonymous referees whose invaluable comments led to an improved version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmok Jeon.

Additional information

Research of Y. Jeon was supported by NRF 2010-0021683, and E.-J. Park was supported in part by the WCU program through NRF R31-10049.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, Y., Park, EJ. New locally conservative finite element methods on a rectangular mesh. Numer. Math. 123, 97–119 (2013). https://doi.org/10.1007/s00211-012-0477-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-012-0477-5

Mathematics Subject Classification

Navigation