Skip to main content
Log in

Discontinuous Galerkin Methods for the Ostrovsky–Vakhnenko Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop discontinuous Galerkin methods for the Ostrovsky–Vakhnenko (OV) equation, which yields the shock solutions and singular soliton solutions, such as peakon, cuspon and loop solitons. The OV equation has also been shown to have a bi-Hamiltonian structure. We directly develop the energy stable or Hamiltonian conservative discontinuous Galerkin schemes for the OV equation. Error estimates for the two energy stable schemes are also proved. For some singular solutions, including cuspon and loop soliton solutions, the hodograph transformation is adopted to transform the OV equation or the generalized OV system to the coupled dispersionless (CD) system. Subsequently, two discontinuous Galerkin schemes are constructed for the transformed CD system. Numerical experiments are provided to demonstrate the accuracy and capability of the proposed schemes, including shock solution and, peakon, cuspon and loop soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Brunelli, J.C., Sakovich, S.: Hamiltonian structures for the Ostrovsky–Vakhnenko equation. Commun. Nonlinear Sci. Numer. Simul. 18(1), 56–62 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1975)

    Google Scholar 

  5. Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Coclite, G.M., Ridder, J., Risebro, N.H.: A convergent finite difference scheme for the Ostrovsky–Hunter equation on a bounded domain. BIT Numer. Math. 57(1), 93–122 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Feng, B.F., Maruno, K., Ohta, Y.: Integrable semi-discretizations of the reduced Ostrovsky equation. J. Phys. A: Math. Theor. 48(13), 135203 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Feng, B.F., Maruno, K., Ohta, Y.: A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue. J. Phys. A: Math. Theor. 50(5), 055201 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Gui, G., Liu, Y.: On the Cauchy problem for the Ostrovsky equation with positive dispersion. Commun. Partial Differ. Equ. 32(12), 1895–1916 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Grimshaw, R.H.J., Helfrich, K., Johnson, E.R.: The reduced Ostrovsky equation: integrability and breaking. Stud. Appl. Math. 129(4), 414–436 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Hunter, J.K.: Numerical solutions of some nonlinear dispersive wave equations. Lect. Appl. Math. 26, 301–316 (1990)

    MathSciNet  Google Scholar 

  14. Karakashian, O., Xing, Y.L.: A posteriori error estimates for conservative local discontinuous Galerkin methods for the generalized Korteweg–de Vries equation. Commun. Comput. Phys. 20(01), 250–278 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Levy, D., Shu, C.-W., Yan, J.: Local discontinuous Galerkin methods for nonlinear dispersive equations. J. Comput. Phys. 196(2), 751–772 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Linares, F., Milanés, A.: Local and global well-posedness for the Ostrovsky equation. J. Differ. Equ. 222(2), 325–340 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Levandosky, S., Liu, Y.: Stability of solitary waves of a generalized Ostrovsky equation. SIAM J. Math. Anal. 38(3), 985–1011 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Levandosky, S., Liu, Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete Contin. Dyn. Syst. Ser. B 7(4), 793 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Liu, Y.: On the stability of solitary waves for the Ostrovsky equation. Q. Appl. Math. 65(3), 571–589 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Liu, Y., Pelinovsky, D., Sakovich, A.: Wave breaking in the Ostrovsky–Hunter equation. SIAM J. Math. Anal. 42(5), 1967–1985 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Parkes, E.J.: The stability of solutions of Vakhnenko’s equation. J. Phys. A: Math. Gen. 26(22), 6469 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Parkes, E.J.: Explicit solutions of the reduced Ostrovsky equation. Chaos Solitons Fractals 31(3), 602–610 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Parkes, E.J.: Some periodic and solitary travelling-wave solutions of the short-pulse equation. Chaos Solitons Fractals 38(1), 154–159 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)

  25. Ridder, J., Ruf, A.M.: A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions. BIT Numer. Math. 59, 1–22 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Stepanyants, Y.A.: On stationary solutions of the reduced Ostrovsky equation: periodic waves, compactons and compound solitons. Chaos Solitons Fractals 28(1), 193–204 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Vakhnenko, V.A.: Solitons in a nonlinear model medium. J. Phys. A: Math. Gen. 25(15), 4181 (1992)

    MathSciNet  MATH  Google Scholar 

  29. Vakhnenko, V.O., Parkes, E.J.: The two loop soliton solution of the Vakhnenko equation. Nonlinearity 11(6), 1457 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Varlamov, V., Liu, Y.: Cauchy problem for the Ostrovsky equation. Discrete Contin. Dyn. Syst.-A 10(3), 731–753 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for three classes of nonlinear wave equations. J. Comput. Math. 22, 250–274 (2004)

    MathSciNet  MATH  Google Scholar 

  32. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for two classes of two-dimensional nonlinear wave equations. Physica D 208(1), 21–58 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195(25), 3430–3447 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Xu, Y., Shu, C.-W.: Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection–diffusion and KdV equations. Comput. Methods Appl. Mech. Eng. 196(37–40), 3805–3822 (2007)

    MathSciNet  MATH  Google Scholar 

  36. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Xia, Y., Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for the generalized Zakharov system. J. Comput. Phys. 229(4), 1238–1259 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Xia, Y., Xu, Y.: A conservative local discontinuous Galerkin method for the Schrödinger–KdV system. Commun. Comput. Phys. 15(4), 1091–1107 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1–4), 27–47 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, C., Xu, Y., Xia, Y.: Local discontinuous Galerkin methods for the \(\mu \)-Camassa–Holm and \(\mu \)-Degasperis–Procesi equations. J. Sci. Comput. 79, 1294–1334 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Zhang, Q., Xia, Y.: Conservative and dissipative local discontinuous Galerkin methods for Korteweg–de Vries type equations. Commun. Comput. Phys. 25, 532–563 (2019)

    MathSciNet  Google Scholar 

  44. Zhang, Q., Xia, Y.: Discontinuous Galerkin methods for short pulse type equations via hodograph transformations. J. Comput. Phys. 399, 108928 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhua Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yinhua Xia: Research supported by NSFC Grant 11871449, and a Grant from Laboratory of Computational Physics (No. 6142A0502020817).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Xia, Y. Discontinuous Galerkin Methods for the Ostrovsky–Vakhnenko Equation. J Sci Comput 82, 24 (2020). https://doi.org/10.1007/s10915-019-01109-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-019-01109-8

Keywords

Navigation