Skip to main content
Log in

Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG\(_{k}\) Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In our earlier work (Cockburn et al. in J Sci Comput 79(3):1777–1800, 2019), we approximated solutions of a general class of scalar parabolic semilinear PDEs by an interpolatory hybridizable discontinuous Galerkin (interpolatory HDG) method. This method reduces the computational cost compared to standard HDG since the HDG matrices are assembled once before the time integration. Interpolatory HDG also achieves optimal convergence rates; however, we did not observe superconvergence after an element-by-element postprocessing. In this work, we revisit the Interpolatory HDG method for reaction diffusion problems, and use the postprocessed approximate solution to evaluate the nonlinear term. We prove this simple change restores the superconvergence and keeps the computational advantages of the Interpolatory HDG method. We present numerical results to illustrate the convergence theory and the performance of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, 3rd edn., vol. 15, Springer, New York (2008)

  2. Chabaud, B., Cockburn, B.: Uniform-in-time superconvergence of HDG methods for the heat equation. Math. Comput. 81(277), 107–129 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, C.M., Larsson, S., Zhang, N.Y.: Error estimates of optimal order for finite element methods with interpolated coefficients for the nonlinear heat equation. IMA J. Numer. Anal. 9(4), 507–524 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Z., Douglas Jr., J.: Approximation of coefficients in hybrid and mixed methods for nonlinear parabolic problems. Mater. Appl. Comput. 10(2), 137–160 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Christie, I., Griffiths, D.F., Mitchell, A.R., Sanz-Serna, J.M.: Product approximation for nonlinear problems in the finite element method. IMA J. Numer. Anal. 1(3), 253–266 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cockburn, B.: Static condensation, hybridization, and the devising of the HDG methods. In: Barrenechea, G.R., Brezzi, F., Cagniani, A., Georgoulis, E.H. (eds.), Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lecture Notes for Computer Science Engineering, vol. 114, Springer, Berlin. LMS Durham Symposia Funded by the London Mathematical Society. Durham, UK, July 8–16 (2014)

  7. Cockburn, B.: Discontinuous Galerkin methods for computational fluid dynamics. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics, vol. 5, 2nd edn, pp. 141–203. Wiley, Chichester (2018)

    Google Scholar 

  8. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math. Model. Numer. Anal. 50(3), 635–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 165–186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Fu, G.: Superconvergence by \(M\)-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Fu, G., Sayas, F.-J.: Superconvergence by \(M\)-decompositions. Part I: general theory for HDG methods for diffusion. Math. Comput. 86(306), 1609–1641 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79(271), 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian. SIAM J. Sci. Comput. 38(1), A545–A566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shen, J.: An algorithm for stabilizing Hybridizable discontinuous Galerkin methods for nonlinear elasticity. RINAM 1(1), 1–20 (2019)

    Google Scholar 

  16. Cockburn, B., Singler, J.R., Zhang, Y.: Interpolatory HDG method for parabolic semilinear PDEs. J. Sci. Comput. 79(3), 1777–1800 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Pietro, D .A., Ern, A.: Hybrid high-order methods for variable-diffusion problems on general meshes. C. R. Acad. Sci Paris Ser. I 353, 31–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dickinson, B.T., Singler, J.R.: Nonlinear model reduction using group proper orthogonal decomposition. Int. J. Numer. Anal. Model. 7(2), 356–372 (2010)

    MathSciNet  Google Scholar 

  21. Douglas Jr., J., Dupont, T.: The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures. Math. Comput. 20(130), 360–389 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fletcher, C.A.J.: The group finite element formulation. Comput. Methods Appl. Mech. Eng. 37(2), 225–244 (1983)

    Article  MathSciNet  Google Scholar 

  23. Fletcher, C.A.J.: Time-splitting and the group finite element formulation. In: Computational Techniques and Applications: CTAC-83 (Sydney, 1983)

  24. Kabaria, H., Lew, A.J., Cockburn, B.: A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput. Methods Appl. Mech. Eng. 283, 303–329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, D., Park, E.-J., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51(2), 267–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Larsson, S., Thomée, V., Zhang, N.Y.: Interpolation of coefficients and transformation of the dependent variable in finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11(1), 105–124 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. López Marcos, J .C., Sanz-Serna, J .M.: Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability. IMA J. Numer. Anal. 8(1), 71–84 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moro, D., Nguyen, N.-C., Peraire, J.: A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws. Int. J. Numer. Methods Eng. 91, 950–970 (2012)

    Article  MathSciNet  Google Scholar 

  29. Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231, 5955–5988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations (AIAA paper 2010-362). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida (2010)

  32. Peraire, J., Nguyen, N. C., Cockburn, V: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations (AIAA paper 2010-363). In: Proceedings of the 48th AIAA Aerospace Sciences Meeting and Exhibit, Orlando, Florida (2010)

  33. Sanz-Serna, J.M., Abia, L.: Interpolation of the coefficients in nonlinear elliptic Galerkin procedures. SIAM J. Numer. Anal. 21(1), 77–83 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25(1), 151–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. Terrana, S., Nguyen, N.C., Bonet, J., Peraire, J.: A hybridizable discontinuous Galerkin method for both thin and 3D nonlinear elastic structures. Comput. Methods Appl. Mech. Eng. 352, 561–585 (2019)

    Article  MathSciNet  Google Scholar 

  36. Tourigny, Y.: Product approximation for nonlinear Klein–Gordon equations. IMA J. Numer. Anal. 10(3), 449–462 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, C.: Convergence of the interpolated coefficient finite element method for the two-dimensional elliptic sine-Gordon equations. Numer. Methods Partial Differ. Equ. 27(2), 387–398 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Z.: Nonlinear model reduction based on the finite element method with interpolated coefficients: semilinear parabolic equations. Numer. Methods Partial Differ. Equ. 31(6), 1713–1741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wheeler, M.F.: A priori \(L_{2}\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10, 723–759 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xie, Z., Chen, C.: The interpolated coefficient FEM and its application in computing the multiple solutions of semilinear elliptic problems. Int. J. Numer. Anal. Model. 2(1), 97–106 (2005)

    MathSciNet  MATH  Google Scholar 

  41. Xiong, Z., Chen, C.: Superconvergence of rectangular finite element with interpolated coefficients for semilinear elliptic problem. Appl. Math. Comput. 181(2), 1577–1584 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Xiong, Z., Chen, C.: Superconvergence of triangular quadratic finite element with interpolated coefficients for semilinear parabolic equation. Appl. Math. Comput. 184(2), 901–907 (2007)

    MathSciNet  MATH  Google Scholar 

  43. Xiong, Z., Chen, Y., Zhang, Y.: Convergence of FEM with interpolated coefficients for semilinear hyperbolic equation. J. Comput. Appl. Math. 214(1), 313–317 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhu, J., Zhang, Y.-T., Newman, S.A., Alber, M.: Application of discontinuous Galerkin methods for reaction–diffusion systems in developmental biology. J. Sci. Comput. 40(1–3), 391–418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G. Chen is supported by National natural science Foundation of China (NSFC) under Grant Number 11801063 and China Postdoctoral Science Foundation under Grant Number 2018M633339. The research of Y. Zhang is partially supported by the US National Science Foundation (NSF) under Grant Number DMS-1619904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangwen Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Recall the steady state problem (24) from Sect. 3.2.4, which we repeat here for convenience: let \((\overline{\varvec{q}}_h,{\overline{u}}_h,\widehat{{{\overline{u}}}}_h)\in \varvec{V}_h\times W_h\times M_h\) be the solution of

$$\begin{aligned} {\mathscr {B}} (\overline{\varvec{q}}_h,{\overline{u}}_h,\widehat{\overline{u}}_h, \varvec{r}_h, v_h, {{\widehat{v}}}_h )= (f - \varPi _W u_t - F(u),v_h)_{{\mathcal {T}}_h}, \end{aligned}$$
(32)

for all \((\varvec{r}_h,v_h,{\widehat{v}}_h)\in \varvec{V}_h\times W_h\times M_h\). Since \( \varPi _W \) commutes with the time derivative, taking the partial derivative of (32) with respect to t shows \((\partial _t \overline{\varvec{q}}_h,\partial _t{\overline{u}}_h,\partial _t\widehat{{{\overline{u}}}}_h)\in \varvec{V}_h\times W_h\times M_h\) is the solution of

$$\begin{aligned} {\mathscr {B}} (\partial _t\overline{\varvec{q}}_h,\partial _t{\overline{u}}_h,\partial _t\widehat{{{\overline{u}}}}_h, \varvec{r}_h, v_h, {{\widehat{v}}}_h )&= (f_t - \varPi _W u_{tt} - F'(u)u_t,v_h)_{{\mathcal {T}}_h}, \end{aligned}$$

for all \((\varvec{r}_h,v_h,{\widehat{v}}_h)\in \varvec{V}_h\times W_h\times M_h\).

The proof of the following lemma is very similar to a proof in [13], hence we omit it here.

Lemma 6.1

For \(\varepsilon _h^{\overline{\varvec{q}}}=\varvec{\varPi }_{V}\varvec{q}- \overline{\varvec{q}}_h \), \( \varepsilon _h^{ {{\overline{u}}}}=\varPi _{W} {u}-{{\overline{u}}}_h \), and \( \varepsilon _h^{ \widehat{\overline{u}}}=P_M u-\widehat{{{\overline{u}}}}_h\), we have

$$\begin{aligned} {\mathscr {B}}(\varepsilon _h^{\overline{\varvec{q}}},\varepsilon _h^{\overline{u}},\varepsilon _h^{\widehat{{{\overline{u}}}}}; \varvec{r}_h, w_h, \widehat{v}_h) = (\varvec{\varPi }_V \varvec{q} - \varvec{q},\varvec{r}_h)_{{\mathcal {T}}_h}+ (\varPi _W u_t - u_t , v_h)_{{\mathcal {T}}_h}, \end{aligned}$$
(33)

for all \((\varvec{r}_h,v_h,{{\widehat{v}}}_h)\in \varvec{V}_h\times W_h\times M_h\).

The next step is the consideration of the dual problem (10), which we again repeat for convenience:

$$\begin{aligned} \begin{aligned}&\varvec{\varPhi }+\nabla \varPsi =0\qquad \qquad \text {in}\ \varOmega ,\\&\nabla \cdot \varvec{\varPhi }=\varTheta \qquad \quad ~~\text {in}\ \varOmega ,\\&\varPsi = 0\qquad \qquad \text {on}\ \partial \varOmega . \end{aligned} \end{aligned}$$
(34)

By the assumption at the beginning of Sect. 3, this boundary value problem admits the regularity estimate

$$\begin{aligned} \Vert \varvec{\varPhi }\Vert _{H^{1}(\varOmega )} + \Vert \varPsi \Vert _{H^{2}(\varOmega )} \le C \Vert \varTheta \Vert _{L^{2}(\varOmega )} \end{aligned}$$
(35)

for all \(\varTheta \in L^2(\varOmega )\).

Lemma 6.2

We have

$$\begin{aligned} \Vert \varepsilon ^{{{\overline{u}}}}_h\Vert _{{\mathcal {T}}_h}&\le Ch^{\min \{k,1\}} (\Vert \varvec{q} - \varvec{\varPi }_V \varvec{q}\Vert _{{\mathcal {T}}_h}+\Vert u_t - \varPi _W u_t\Vert _{{\mathcal {T}}_h}),\\ \Vert \varepsilon ^{\overline{\varvec{q}}}_h\Vert _{{\mathcal {T}}_h}&\le C (\Vert \varvec{q} - \varvec{\varPi }_V \varvec{q}\Vert _{{\mathcal {T}}_h} +\Vert u_t - \varPi _W u_t\Vert _{\mathcal T_h}). \end{aligned}$$

Proof

Let \(\varTheta = \varepsilon _h^{{{\overline{u}}}}\) in the dual problem (34), and take \((\varvec{r}_h,v_h,{{\widehat{v}}}_h) = (-\,\varvec{\varPi }_V\varvec{\varPhi }, \varPi _W\varPsi ,P_M \varPsi )\) in the definition of \( {\mathscr {B}} \) (16) to get

$$\begin{aligned}&{\mathscr {B}} \left( \varepsilon ^{\overline{\varvec{q}}}_h,\varepsilon ^{{{\overline{u}}}}_h,\varepsilon ^{\widehat{{{\overline{u}}}}}_h;-\varvec{\varPi }_V\varvec{\varPhi },\varPi _W\varPsi ,P_M\varPsi \right) \\&\quad =-\,\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPi }_V\varvec{\varPhi })_{{\mathcal {T}}_h}+(\varepsilon ^{{{\overline{u}}}}_h,\nabla \cdot \varvec{\varPi }_V\varvec{\varPhi }\right) _{{\mathcal {T}}_h}-\left\langle \varepsilon ^{\widehat{{{\overline{u}}}}}_h, \varvec{\varPi }_V\varvec{\varPhi }\cdot \varvec{n}\right\rangle _{\partial {\mathcal {T}}_h}+ \left( \nabla \cdot \varepsilon ^{\overline{\varvec{q}}}_h, \varPi _W\varPsi \right) _{{\mathcal {T}}_h}\\&\quad \quad -\,\left\langle \varepsilon ^{\overline{\varvec{q}}}_h\cdot \varvec{n}, P_M \varPsi \right\rangle _{\partial {{\mathcal {T}}_h}} + \left\langle \tau \left( \varepsilon ^{{{\overline{u}}}}_h-\varepsilon ^{\widehat{{{\overline{u}}}}}_h\right) , \varPi _W \varPsi - P_M\varPsi \right\rangle _{\partial {\mathcal {T}}_h}\\&\quad =-\,\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPhi }\right) _{{\mathcal {T}}_h}+\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi }\right) _{{\mathcal {T}}_h}+\left( \varepsilon ^{{{\overline{u}}}}_h,\nabla \cdot \varvec{\varPhi }\right) _{{\mathcal {T}}_h}-\left( \varepsilon ^{{{\overline{u}}}}_h,\nabla \cdot (\varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi })\right) _{{\mathcal {T}}_h}\\&\quad \quad +\,\langle \varepsilon ^{\widehat{{{\overline{u}}}}}_h, \left( \varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi }\right) \cdot \varvec{n}\rangle _{\partial {\mathcal {T}}_h} + \left( \nabla \cdot \varepsilon ^{\overline{\varvec{q}}}_h, \varPsi \right) _{{\mathcal {T}}_h} + \left( \nabla \cdot \varepsilon ^{\overline{\varvec{q}}}_h, \varPi _W \varPsi - \varPsi \right) _{{\mathcal {T}}_h}\\&\quad \quad -\left\langle \varepsilon ^{\overline{\varvec{q}}}_h\cdot \varvec{n}, \varPsi \right\rangle _{\partial {{\mathcal {T}}_h}} + \left\langle \tau \left( \varepsilon ^{{{\overline{u}}}}_h-\varepsilon ^{\widehat{{{\overline{u}}}}}_h\right) , \varPi _W \varPsi - P_M\varPsi \right\rangle _{\partial {\mathcal {T}}_h}\\&\quad =\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi }\right) _{{\mathcal {T}}_h} + \left\| \varepsilon ^{\overline{u}}_h\right\| _{{\mathcal {T}}_h}^2. \end{aligned}$$

On the other hand, take \((\varvec{r}_h,v_h,{{\widehat{v}}}_h) = (-\,\varvec{\varPi }_V\varvec{\varPhi }, \varPi _W\varPsi ,P_M \varPsi )\) in (33) to get

$$\begin{aligned} {\mathscr {B}} \left( \varepsilon ^{\overline{\varvec{q}}}_h,\varepsilon ^{\overline{u}}_h,\varepsilon ^{\widehat{\overline{u}}}_h;-\varvec{\varPi }_V\varvec{\varPhi },\varPi _W\varPsi ,P_M\varPsi \right) = (\varvec{q} - \varvec{\varPi }_V \varvec{q},\varvec{\varPi }_V\varvec{\varPhi })_{{\mathcal {T}}_h} + (\varPi _W u_t - u_t , \varPi _W \varPsi )_{{\mathcal {T}}_h}. \end{aligned}$$

Comparing the above two equalities gives

$$\begin{aligned} \Vert \varepsilon ^{{{\overline{u}}}}_h\Vert ^2_{{\mathcal {T}}_h}&=-\,\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi }\right) _{{\mathcal {T}}_h}+ (\varvec{q} - \varvec{\varPi }_V \varvec{q},\varvec{\varPi }_V\varvec{\varPhi })_{{\mathcal {T}}_h} + (\varPi _W u_t - u_t , \varPi _W \varPsi )_{{\mathcal {T}}_h} \\&=-\,\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi }\right) _{{\mathcal {T}}_h}+ (\varvec{q} - \varvec{\varPi }_V \varvec{q},\varvec{\varPi }_V\varvec{\varPhi } - \varvec{\varPhi })_{{\mathcal {T}}_h} \\&\quad +\, (\varvec{q} - \varvec{\varPi }_V \varvec{q},\varvec{\varPhi })_{{\mathcal {T}}_h} + (\varPi _W u_t - u_t , \varPi _W \varPsi )_{{\mathcal {T}}_h} \\&=-\,\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi }\right) _{{\mathcal {T}}_h}+ (\varvec{q} - \varvec{\varPi }_V \varvec{q},\varvec{\varPi }_V\varvec{\varPhi } - \varvec{\varPhi })_{{\mathcal {T}}_h} \\&\quad -\, (\varvec{q} - \varvec{\varPi }_V \varvec{q},\nabla \varPsi )_{{\mathcal {T}}_h} + (\varPi _W u_t - u_t , \varPi _W \varPsi )_{{\mathcal {T}}_h} \\&=-\,\left( \varepsilon ^{\overline{\varvec{q}}}_h,\varvec{\varPhi }- \varvec{\varPi }_V \varvec{\varPhi }\right) _{{\mathcal {T}}_h}+ (\varvec{q} - \varvec{\varPi }_V \varvec{q},\varvec{\varPi }_V\varvec{\varPhi } - \varvec{\varPhi })_{{\mathcal {T}}_h} \\&\quad -\, (\varvec{q} - \varvec{\varPi }_V \varvec{q},\nabla (\varPsi - \varPi _W\varPsi ))_{{\mathcal {T}}_h} + (\varPi _W u_t - u_t , \varPi _W \varPsi - \min \{k,1\}\varPi _0 \varPsi )_{{\mathcal {T}}_h}. \end{aligned}$$

Hence, by the regularity of the dual PDE (35), we have

$$\begin{aligned} \left\| \varepsilon ^{{{\overline{u}}}}_h\right\| ^2_{{\mathcal {T}}_h}&\le Ch^2 \left\| \varepsilon ^{\overline{\varvec{q}}}_h\right\| _{{\mathcal {T}}_h}^2 + Ch^{\min \{2k,2\}}\Vert \varvec{q} - \varvec{\varPi }_V \varvec{q}\Vert _{{\mathcal {T}}_h}^2 \nonumber \\&\quad + Ch^{\min \{2k,2\}}\Vert u_t - \varPi _W u_t\Vert _{{\mathcal {T}}_h}^2. \end{aligned}$$
(36)

Next, take \((\varvec{r}_h,v_h,{\widehat{v}}_h)=(\varepsilon _h^{\overline{\varvec{q}}},\varepsilon _h^{{{\overline{u}}}},\varepsilon _h^{\widehat{{{\overline{u}}}}})\) in (33) to obtain

$$\begin{aligned}&\left\| \varepsilon _h^{\overline{\varvec{q}}}\right\| ^2_{{\mathcal {T}}_h}+\left\langle \tau \left( \varepsilon _h^{{{\overline{u}}}} -\varepsilon _h^{\widehat{ {{\overline{u}}}}}\right) , \varepsilon _h^{{{\overline{u}}}} -\varepsilon _h^{\widehat{ {{\overline{u}}}}}\right\rangle _{\partial {{\mathcal {T}}_h}} \\&\quad = \left( \varvec{\varPi }_V {\varvec{q}} -\varvec{q}, \varepsilon _h^{\overline{\varvec{q}}}\right) _{{\mathcal {T}}_h} + \left( \varPi _W u_t - u_t,\varepsilon _h^{{{\overline{u}}}}\right) _{{\mathcal {T}}_h}\\&\quad \le C\Vert \varvec{\varPi }_V {\varvec{q}} -\varvec{q}\Vert _{{\mathcal {T}}_h}^2 + \frac{1}{2} \left\| \varepsilon _h^{\overline{\varvec{q}}}\right\| ^2_{{\mathcal {T}}_h} + 4C\Vert \varPi _W u_t - u_t\Vert _{{\mathcal {T}}_h}^2 +\frac{1}{4C} \left\| \varepsilon _h^{{{\overline{u}}}}\right\| _{{\mathcal {T}}_h}^2. \end{aligned}$$

This implies

$$\begin{aligned}&\left\| \varepsilon _h^{\overline{\varvec{q}}}\right\| ^2_{{\mathcal {T}}_h}+\left\langle \tau \left( \varepsilon _h^{{{\overline{u}}}} -\varepsilon _h^{\widehat{ {{\overline{u}}}}}\right) , \varepsilon _h^{{{\overline{u}}}} -\varepsilon _h^{\widehat{ {{\overline{u}}}}} \right\rangle _{\partial {{\mathcal {T}}_h}} \nonumber \\&\quad \le 2C\Vert \varvec{\varPi }_V {\varvec{q}} -\varvec{q}\Vert _{{\mathcal {T}}_h}^2 + 8C\Vert \varPi _W u_t - u_t\Vert _{{\mathcal {T}}_h}^2 +\frac{1}{2C} \Vert \varepsilon _h^{{{\overline{u}}}}\Vert _{{\mathcal {T}}_h}^2. \end{aligned}$$
(37)

Next, use \(h\le 1\) and substitute (37) into (36) to yield the result. \(\square \)

Following the same steps, we obtain the following result:

Lemma 6.3

We have

$$\begin{aligned} \Vert \partial _t(\varPi _W u - {{\overline{u}}}_h)\Vert _{{\mathcal {T}}_h}&\le Ch^{\min \{k,1\}} (\Vert \varvec{q}_t - \varvec{\varPi }_V \varvec{q}_t\Vert _{{\mathcal {T}}_h} +\Vert u_{tt} - \varPi _W u_{tt}\Vert _{{\mathcal {T}}_h}). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Cockburn, B., Singler, J. et al. Superconvergent Interpolatory HDG Methods for Reaction Diffusion Equations I: An HDG\(_{k}\) Method. J Sci Comput 81, 2188–2212 (2019). https://doi.org/10.1007/s10915-019-01081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01081-3

Keywords

Navigation