Skip to main content
Log in

Complementary Solutions of Nitsche’s Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Embedded methods that are based on Nitsche’s approach can facilitate the task of mesh generation in many configurations. The basic workings of the method are well understood, in terms of a bound on the stabilization parameter. However, its spectral behavior has not been explored in depth. In addition to the eigenpairs which approximate the exact ones, as in the standard formulation, Nitsche’s method gives rise to mesh-dependent complementary pairs. The dependence of the eigenvalues on the Nitsche parameter is related to a boundary quotient of the eigenfunctions, explaining the manner in which stabilization engenders coercivity without degrading the accuracy of the discrete eigenpairs. The boundary quotient proves to be useful for separating the two types of solutions. The quotient space is handy for determining the number of eigenpairs and complementary pairs. The complementary solutions approximate functions in the orthogonal complement of the kinematically admissible subspace. A global result for errors in the Galerkin approximation of the eigenvalue problem that pertains to all modes of the discretization, is extended to the Nitsche formulation. Numerical studies on non-conforming aligned meshes confirm the dependence of the eigenvalues on the parameter, in line with the corresponding boundary quotients. The spectrum of a reduced system obtained by algebraic elimination is free of complementary solutions, warranting its use in the solution of boundary-value problems. The reduced system offers an incompatible discretization of eigenvalue problems that is suitable for engineering applications. Using Irons–Guyan reduction yields a spectrum that is virtually insensitive to stabilization, with high accuracy in both eigenvalues and eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Baiges, J., Codina, R., Henke, F., Shahmiri, S., Wall, W.A.: A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes. Int. J. Numer. Methods Eng. 90(5), 636–658 (2012). https://doi.org/10.1002/nme.3339

    Article  MathSciNet  MATH  Google Scholar 

  2. Gerstenberger, A., Wall, W.A.: An embedded Dirichlet formulation for 3D continua. Int. J. Numer. Methods Eng. 82(5), 537–563 (2010). https://doi.org/10.1002/nme.2755

    Article  MathSciNet  MATH  Google Scholar 

  3. Li, Z., Ito, K.: The Immersed Interface Method. Frontiers in Applied Mathematics, vol. 33. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2006)

    Book  Google Scholar 

  4. Schillinger, D., Rank, E.: An unfitted \(hp\)-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200(47–48), 3358–3380 (2011). https://doi.org/10.1016/j.cma.2011.08.002

    Article  MathSciNet  MATH  Google Scholar 

  5. de Prenter, F., Verhoosel, C.V., van Zwieten, G.J., van Brummelen, E.H.: Condition number analysis and preconditioning of the finite cell method. Comput. Methods Appl. Mech. Eng. 316, 297–327 (2017). https://doi.org/10.1016/j.cma.2016.07.006

    Article  MathSciNet  Google Scholar 

  6. Nitsche, J.: Uber ein Variationsprinzip zur Lösung von Dirichlet–Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hambg. 36(1), 9–15 (1971)

    Article  Google Scholar 

  7. Stenberg, R.: On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63(1–3), 139–148 (1995). https://doi.org/10.1016/0377-0427(95)00057-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbosa, H.J.B., Hughes, T.J.R.: The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška–Brezzi condition. Comput. Methods Appl. Mech. Eng. 85(1), 109–128 (1991). https://doi.org/10.1016/0045-7825(91)90125-P

    Article  MATH  Google Scholar 

  9. Barbone, P.E., Montgomery, J.M., Ofer, O.M., Harari, I.: Scattering by a hybrid asymptotic/finite element method. Comput. Methods Appl. Mech. Eng. 164(1–2), 141–156 (1998). https://doi.org/10.1016/S0045-7825(98)00051-6

    Article  MathSciNet  MATH  Google Scholar 

  10. Harari, I., Barbone, P.E., Montgomery, J.M.: Finite element formulations for exterior problems: application to hybrid methods, non-reflecting boundary conditions, and infinite elements. Int. J. Numer. Methods Eng. 40(15), 2791–2805 (1997). https://doi.org/10.1002/(SICI)1097-0207(19970815)40:15<2791::AID-NME191>3.0.CO;2-W

    Article  MathSciNet  MATH  Google Scholar 

  11. Harari, I., Albocher, U.: Spectral investigations of Nitsche’s method. Finite Elem. Anal. Des. 145(17), 20–31 (2018). https://doi.org/10.1016/j.finel.2018.03.005

    Article  MathSciNet  Google Scholar 

  12. Dolbow, J., Harari, I.: An efficient finite element method for embedded interface problems. Internat. J. Numer. Methods Eng. 78(2), 229–252 (2009). https://doi.org/10.1002/nme.2486. (Erratum: Ibid. 88(12):1344, (2011))

    Article  MathSciNet  MATH  Google Scholar 

  13. Embar, A., Dolbow, J., Harari, I.: Imposing Dirichlet boundary conditions with Nitsche’s method and spline-based finite elements. Int. J. Numer. Methods Eng. 83(7), 877–898 (2010). https://doi.org/10.1002/nme.2863

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansbo, A., Hansbo, P.: An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191(47–48), 5537–5552 (2002). https://doi.org/10.1016/S0045-7825(02)00524-8

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, P., Ginsberg, J.H.: On the relationship between veering of eigenvalue loci and parameter sensitivity of eigenfunctions. J. Vib. Acoust. 114(2), 141–148 (1992). https://doi.org/10.1115/1.2930242

    Article  Google Scholar 

  16. Perkins, N.C., Mote, C.D.: Comments on curve veering in eigenvalue problems. J. Sound Vib. 106(3), 451–463 (1986). https://doi.org/10.1016/0022-460X(86)90191-4

    Article  Google Scholar 

  17. Lax, P.D.: Linear Algebra and Its Applications, 2nd edn. Wiley Interscience, Hoboken (2007)

    MATH  Google Scholar 

  18. Rank, E., Reuss, M., Kollmannsberger, S., Schillinger, D., Düster, A.: Geometric modeling, isogeometric analysis and the finite cell method. Comput. Methods Appl. Mech. Eng. 249–252, 104–115 (2012). https://doi.org/10.1016/j.cma.2012.05.022

    Article  MATH  Google Scholar 

  19. Irons, B.M.: Eigenvalue economisers in vibration problems. J. R. Aeronaut. Soc. 67, 526–528 (1963). https://doi.org/10.1017/S0001924000062618

    Article  Google Scholar 

  20. Guyan, R.: Reduction of stiffness and mass matrices. AIAA J. 3, 380–387 (1965). https://doi.org/10.2514/3.2874

    Article  Google Scholar 

  21. Burman, E., Hansbo, P.: Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Appl. Numer. Math. 62(4), 328–341 (2012). https://doi.org/10.1016/j.apnum.2011.01.008

    Article  MathSciNet  MATH  Google Scholar 

  22. Burman, E., Claus, S., Hansbo, P., Larson, M., Massing, A.: CutFEM: discretizing geometry and partial differential equations. Int. J. Numer. Methods Eng. 104(7), 472–501 (2015). https://doi.org/10.1002/nme.4823

    Article  MathSciNet  MATH  Google Scholar 

  23. Lew, A.J., Buscaglia, G.C.: A discontinuous-Galerkin-based immersed boundary method. Int. J. Numer. Methods Eng. 76(4), 427–454 (2008). https://doi.org/10.1002/nme.2312

    Article  MathSciNet  MATH  Google Scholar 

  24. Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice-Hall Inc, Englewood Cliffs (1973)

    MATH  Google Scholar 

  25. Hughes, T.J.R., Evans, J.A., Reali, A.: Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems. Comput. Methods Appl. Mech. Eng. 272, 290–320 (2014). https://doi.org/10.1016/j.cma.2013.11.012

    Article  MathSciNet  MATH  Google Scholar 

  26. de Prenter, F., Lehrenfeld, C., Massing, A.: A note on the stability parameter in Nitsche’s method for unfitted boundary value problems. Comput. Math. Appl. 75(12), 4322–4336 (2018). https://doi.org/10.1016/j.camwa.2018.03.032

    Article  MathSciNet  MATH  Google Scholar 

  27. Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int. J. Numer. Methods Eng. 92(2), 206–228 (2012). https://doi.org/10.1002/nme.4343

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Adrian Lew for helpful discussions on boundary locking. This research was supported by the Israel Science Foundation (Grant No. 269/17), and by the Diane and Arthur B. Belfer Chair in Mechanics and Biomechanics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Harari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Irons–Guyan Reduced Nitsche Formulation

Appendix: The Irons–Guyan Reduced Nitsche Formulation

Consider the generalized algebraic eigenvalue problem emanating from discretization of the Nitsche formulation in partitioned form

$$\begin{aligned} \left( \left[ \begin{array}{ll} {\mathbf {K}}_{\mathrm {ss}}&{}\quad {\mathbf {K}}_{\mathrm {sn}}\\ {\mathbf {K}}_{\mathrm {ns}}&{}\quad {\mathbf {K}}_{\mathrm {nn}}^{\alpha }\end{array}\right] - \lambda \left[ \begin{array}{ll} {\mathbf {M}}_{\mathrm {ss}}&{} {\mathbf {M}}_{\mathrm {sn}}\\ {\mathbf {M}}_{\mathrm {ns}}&{} {\mathbf {M}}_{\mathrm {nn}}\end{array}\right] \right) \left\{ \begin{array}{l} {\varvec{\psi }}_\mathrm {s}\\ {\varvec{\psi }}_\mathrm {n}\end{array}\right\} = \mathbf {0} \end{aligned}$$
(46)

The degrees of freedom of the eigenvector in \({\varvec{\psi }}_\mathrm {s}\), corresponding to those of the underlying kinematically admissible discretization, are to be retained in the reduced problem. Those in \({\varvec{\psi }}_\mathrm {n}\), corresponding to the additional degrees of freedom in the discrete Nitsche approach, are to be removed. The \({\mathbf {K}}\) matrices arise from the discretization of a(wu) in (2), and the \({\mathbf {M}}\) terms from (wu). The diagonal blocks are symmetric, and each coupling term is the transpose of the corresponding off-diagonal block. The stabilization parameter appears only in the relatively small matrix \({\mathbf {K}}_{\mathrm {nn}}^{\alpha }\). The reduced problem is

$$\begin{aligned} \left( {\mathbf {K}}^* - \lambda {\mathbf {M}}^* \right) {\varvec{\psi }}_\mathrm {s}= \mathbf {0} \end{aligned}$$
(47)

The Irons–Guyan reduced matrices are

$$\begin{aligned} {\mathbf {K}}^*= & {} {\mathbf {K}}_{\mathrm {ss}}- {\mathbf {K}}_{\mathrm {sn}}\left( {\mathbf {K}}_{\mathrm {nn}}^{\alpha }\right) ^{-1}{\mathbf {K}}_{\mathrm {ns}}\end{aligned}$$
(48)
$$\begin{aligned} {\mathbf {M}}^*= & {} {\mathbf {M}}_{\mathrm {ss}}- {\mathbf {M}}_{\mathrm {sn}}\left( {\mathbf {K}}_{\mathrm {nn}}^{\alpha }\right) ^{-1}{\mathbf {K}}_{\mathrm {ns}}- {\mathbf {K}}_{\mathrm {sn}}\left( {\mathbf {K}}_{\mathrm {nn}}^{\alpha }\right) ^{-1}\left( {\mathbf {M}}_{\mathrm {ns}}- {\mathbf {M}}_{\mathrm {nn}}\left( {\mathbf {K}}_{\mathrm {nn}}^{\alpha }\right) ^{-1}{\mathbf {K}}_{\mathrm {ns}}\right) \end{aligned}$$
(49)

Diagonal scaling may be used to precondition the procedure. In this case, every appearance of \(\left( {\mathbf {K}}_{\mathrm {nn}}^{\alpha }\right) ^{-1}\) is replaced by \({\mathbf {D}}\left( {\mathbf {D}}\mathbf {K}_{\mathrm {nn}}^\alpha {\mathbf {D}}\right) ^{-1}{\mathbf {D}}\). Here, \({\mathbf {D}}= 1/\sqrt{\mathrm {diag} \mathbf {K}_{\mathrm {nn}}^\alpha }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harari, I., Albocher, U. Complementary Solutions of Nitsche’s Method. J Sci Comput 81, 1472–1492 (2019). https://doi.org/10.1007/s10915-019-01066-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01066-2

Keywords

Navigation