Skip to main content
Log in

Balanced Iterative Solvers for Linear Nonsymmetric Systems and Nonlinear Systems with PDE Origins: Efficient Black-Box Stopping Criteria

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper discusses the design of efficient algorithms for solving linear nonsymmetric systems and nonlinear systems associated with FEM approximation of elliptic PDEs. The novel feature of the designed linear solvers like GMRES, BICGSTAB(\(\ell \)), TFQMR, and nonlinear solvers like Newton and Picard, is the incorporation of error control in the ‘natural norm’ in combination with an effective a posteriori estimator for the PDE approximation error. This leads to robust black-box stopping criteria in the sense that the iteration is terminated as soon as the algebraic error is insignificant compared to the approximation error. Such a solver is called ‘balanced’ in this paper since the stopping criteria are obtained by balancing (comparing) the algebraic error and the approximation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Galerkin approximation for (18) is inaccurate if the mesh is not fine enough to resolve the layers in the solution and these inaccuracies may also propagate and pollute the approximated solution in regions where the exact solution is well behaved. An alternative way to handle boundary layers is by using Shishkin grids; see [19].

  2. Note that for BICGSTAB2, \(k_1\), \(k_2\) are the iteration counts for the built in stopping criterion in the IFISS implementation of BICGSTAB2 to tolerances of 1e6, 1e9 respectively. The iteration counts \(k^*\) for BICGSTAB2 is obtained by incorporating the weak stopping criterion in this IFISS implementation of BICGSTAB2.

  3. The average cputimes were computed for each h by averaging over cputimes generated from 10 independent runs (of eigs and the IFISS script for computing \(\eta _h\)) for each h.

  4. This observation is clear from \(\Lambda _h\) values in Table 5, however a rigorous mathematical proof is still under research.

  5. \(\mathbf{X}^h_{{E}}\) is not a vector space unless its elements (which are functions) are zero on the boundary.

  6. This is not a rigorous mathematical statement. A proof for this statement is an ongoing research.

  7. This \(k^*\) will in general be different for different l.

  8. This a posteriori approximation error estimate is for the linearized part \((\delta \overrightarrow{u}_h^{(l_k)}, \delta {p}_h^{(l_k)})\).

References

  1. Arioli, M., Loghin, D., Wathen, A.J.: Stopping criteria for iterations in finite element methods. Numer. Math. 99(3), 381–410 (2005). https://doi.org/10.1007/s00211-004-0568-z

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Third edn. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  3. Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Second edn. Oxford University Press, Oxford (2014)

    Book  MATH  Google Scholar 

  4. Elman, H.C., Ramage, A., Silvester, D.J.: IFISS: a computational laboratory for investigating incompressible flow problems. SIAM Review 56(2), 261–273 (2014). https://doi.org/10.1137/120891393

    Article  MathSciNet  MATH  Google Scholar 

  5. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations, First edn. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Freund, R.W.: A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems. SIAM J. Sci. Comput. 14(2), 470–482 (1993). https://doi.org/10.1137/0914029

    Article  MathSciNet  MATH  Google Scholar 

  7. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14(1), 137–158 (1993). https://doi.org/10.1137/0914009

    Article  MathSciNet  MATH  Google Scholar 

  8. Golub, G.H., Van Loan, C.F.: Matrix Computations, Fourth edn. The John Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  9. Gresho, P.M., Gartling, D.K., Torczynski, J.R., Cliffe, K.A., Winters, K.H., Garratt, T.J., Spence, A., Goodrich, J.W.: Is the steady viscous incompressible two-dimensional flow over a backward-facing step at Re = 800 stable? Int. J. Numer. Methods Fluids 17(6), 501–541 (1993). https://doi.org/10.1002/fld.1650170605

    Article  MathSciNet  MATH  Google Scholar 

  10. Hughes, T.J.R., Brooks, A.: A multi-dimensional upwind scheme with no crosswind diffusion. In: T. Hughes (ed.) Finite Element Methods for Convection Dominated Flows, ASME Winter Annual Meeting, New York, USA, vol. 34, pp. 19–35. https://www.researchgate.net/publication/297681092 (1979)

  11. Jiránek, P., Strakos, Z., Vohralík, M.: A posteriori error estimates including algebraic error and stopping criteria for iterative solvers. SIAM J. Sci. Comput. 32(3), 1567–1590 (2010). https://doi.org/10.1137/08073706X

    Article  MathSciNet  MATH  Google Scholar 

  12. Oden, J.T., Demkowicz, L.F.: Applied Functional Analysis, First edn. CRC Press, Boca Raton (1996)

    MATH  Google Scholar 

  13. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12(4), 617–629 (1975). https://doi.org/10.1137/0712047

    Article  MathSciNet  MATH  Google Scholar 

  14. Pietro, D.A.D., Flauraud, E., Vohralík, M., Yousef, S.: A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional refinement for thermal multiphase compositional flows in porous media. J. Comput. Phys. 276, 163–187 (2014). https://doi.org/10.1016/j.jcp.2014.06.061

    Article  MathSciNet  MATH  Google Scholar 

  15. Pietro, D.A.D., Vohralík, M., Yousef, S.: An a posteriori-based, fully adaptive algorithm with adaptive stopping criteria and mesh refinement for thermal multiphase compositional flows in porous media. Comput. Math. Appl. 68(12 B), 2331–2347 (2014). https://doi.org/10.1016/j.camwa.2014.08.008

    Article  MathSciNet  MATH  Google Scholar 

  16. Powell, C.E., Silvester, D.J.: Preconditioning steady-state Navier–Stokes equations with random data. SIAM J. Sci. Comput. 34(5), A2482–A2506 (2012). https://doi.org/10.1137/120870578

    Article  MathSciNet  MATH  Google Scholar 

  17. Pranjal, P.: Optimal iterative solvers for linear systems with stochastic PDE origins: balanced black-box stopping tests. PhD thesis. University of Manchester, UK. http://eprints.maths.manchester.ac.uk/2596/ (2017)

  18. Saad, Y., Schultz, M.: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Comput. 7(3), 856–869 (1986). https://doi.org/10.1137/0907058

    Article  MathSciNet  MATH  Google Scholar 

  19. Shishkin, G.I.: Methods of constructing grid approximations for singularly perturbed boundary-value problems. Condensing grid methods. Rus. J. Numer. Anal. Math. Model. 7(6), 537–562 (1992). https://doi.org/10.1515/rnam.1992.7.6.537

    MathSciNet  MATH  Google Scholar 

  20. Silvester, D., Pranjal, P.: An optimal solver for linear systems arising from stochastic FEM approximation of diffusion equations with random coefficients. SIAM/ASA J. Uncertain. Quantif. 4(1), 298–311 (2016). https://doi.org/10.1137/15M1017740

    Article  MathSciNet  MATH  Google Scholar 

  21. Sleijpen, G.L.G., Fokkema, D.R.: BICGSTAB(L) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Anal. 1, 11–32 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Syamsudhuha, Silvester D.J.: Efficient solution of the steady-state Navier–Stokes equations using a multigrid preconditioned Newton–Krylov method. Int. J. Numer. Methods Fluids 43(12), 1407–1427 (2003). https://doi.org/10.1002/fld.627

    Article  MathSciNet  MATH  Google Scholar 

  23. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods, First edn. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  24. Wathen, A.: Preconditioning and convergence in the right norm. Int. J. Comput. Math. 84(8), 1199–1209 (2007). https://doi.org/10.1080/00207160701355961

    Article  MathSciNet  MATH  Google Scholar 

  25. Wu, C.T.: On the implementation of an accurate and efficient solver for convection–diffusion equations. PhD thesis. University of Maryland, USA. https://drum.lib.umd.edu/handle/1903/32 (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pranjal, Silvester, D. Balanced Iterative Solvers for Linear Nonsymmetric Systems and Nonlinear Systems with PDE Origins: Efficient Black-Box Stopping Criteria. J Sci Comput 81, 271–290 (2019). https://doi.org/10.1007/s10915-019-01018-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01018-w

Keywords

Navigation