Skip to main content

Advertisement

Log in

A Third Order Exponential Time Differencing Numerical Scheme for No-Slope-Selection Epitaxial Thin Film Model with Energy Stability

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose and analyze a (temporally) third order accurate exponential time differencing (ETD) numerical scheme for the no-slope-selection (NSS) equation of the epitaxial thin film growth model, with Fourier pseudo-spectral discretization in space. A linear splitting is applied to the physical model, and an ETD-based multistep approximation is used for time integration of the corresponding equation. In addition, a third order accurate Douglas-Dupont regularization term, in the form of \(-A {\Delta t}^2 \phi _0 (L_N) \Delta _N^2 ( u^{n+1} - u^n)\), is added in the numerical scheme. A careful Fourier eigenvalue analysis results in the energy stability in a modified version, and a theoretical justification of the coefficient A becomes available. As a result of this energy stability analysis, a uniform in time bound of the numerical energy is obtained. And also, the optimal rate convergence analysis and error estimate are derived in details, in the \(\ell ^\infty (0,T; H_h^1) \cap \ell ^2 (0,T; H_h^3)\) norm, with the help of a careful eigenvalue bound estimate, combined with the nonlinear analysis for the NSS model. This convergence estimate is the first such result for a third order accurate scheme for a gradient flow. Some numerical simulation results are presented to demonstrate the efficiency of the numerical scheme and the third order convergence. The long time simulation results for \(\varepsilon =0.02\) (up to \(T=3 \times 10^5\)) have indicated a logarithm law for the energy decay, as well as the power laws for growth of the surface roughness and the mound width. In particular, the power index for the surface roughness and the mound width growth, created by the third order numerical scheme, is more accurate than those produced by certain second order energy stable schemes in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benesova, B., Melcher, C., Suli, E.: An implicit midpoint spectral approximation of nonlocal Cahn–Hilliard equations. Numer. Math. 52, 1466–1496 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boyd, J.: Chebyshev and Fourier Spectral Methods. Dover, New York (2001)

    MATH  Google Scholar 

  4. Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38, 67–86 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order ETD multistep method for thin film growth model without slope selection. ESAIM Math. Model. Numer. Anal. (2019). Submitted and in review: arXiv:1907.02234

  7. Chen, W., Wang, C., Wang, X., Wise, S.M.: A linear iteration algorithm for energy stable second order scheme for a thin film model without slope selection. J. Sci. Comput. 59, 574–601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Wang, X., Yan, Y., Zhang, Z.: A second order bdf numerical scheme with variable steps for the Cahn–Hilliard equation. SIAM J. Numer. Anal. 57(1), 495–525 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, W., Wang, Y.: A mixed finite element method for thin film epitaxy. Numer. Math. 122, 771–793 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, K., Feng, W., Wang, C., Wise, S.M.: An energy stable fourth order finite difference scheme for the Cahn–Hilliard equation. J. Comput. Appl. Math. 362, 574–595 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Church, J.M., Guo, Z., Jimack, P.K., Madzvamuse, A., Promislow, K., Wise, S.M., Yang, F.: High accuracy benchmark problems for Allen–Cahn and Cahn–Hilliard dynamics. Commun. Comput. Phys. 26, 947–972 (2019)

    Article  Google Scholar 

  12. Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ehrlich, G., Hudda, F.G.: Atomic view of surface diffusion: tungsten on tungsten. J. Chem. Phys. 44, 1036–1099 (1966)

    Google Scholar 

  14. Eyre, D.J.: Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Symp. Proc. 529, 39 (1998)

    Article  MathSciNet  Google Scholar 

  15. Golubović, L.: Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett 78, 90–93 (1997)

    Article  Google Scholar 

  16. Gottlieb, D., Orszag, S.A.: Numerical Analysis of Spectral Methods, Theory and Applications. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  17. Gottlieb, S., Tone, F., Wang, C., Wang, X., Wirosoetisno, D.: Long time stability of a classical efficient scheme for two dimensional Navier–Stokes equations. SIAM J. Numer. Anal. 50, 126–150 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gottlieb, S., Wang, C.: Stability and convergence analysis of fully discrete Fourier collocation spectral method for 3-D viscous Burgers’ equation. J. Sci. Comput. 53, 102–128 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hochbruck, M., Ostermann, A.: Exponential multistep methods of Adams-type. BIT Numer. Math. 51, 889–908 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and convergence of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87, 1859–1885 (2018)

    Article  MATH  Google Scholar 

  22. Ju, L., Liu, X., Leng, W.: Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 19, 1667–1687 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ju, L., Zhang, J., Du, Q.: Fast and accurate algorithms for simulating coarsening dynamics of Cahn–Hilliard equations. Comput. Mat. Sci. 108, 272–282 (2015)

    Article  Google Scholar 

  24. Ju, L., Zhang, J., Zhu, L., Du, Q.: Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62, 431–455 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kohn, R.V.: Energy-driven pattern formation. In: Sanz-Sole, M., Soria, J., Varona, J.L., Verdera, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. 1, pp. 359–384. European Mathematical Society Publishing House, Madrid (2007)

    Google Scholar 

  26. Kohn, R.V., Yan, X.: Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pure Appl. Math. 56, 1549–1564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, S., Kim, J.: Effective time step analysis of a nonlinear convex splitting scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 25, 448–460 (2019)

    Article  MathSciNet  Google Scholar 

  28. Li, B.: High-order surface relaxation versus the Ehrlich–Schwoebel effect. Nonlinearity 19, 2581–2603 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, B., Liu, J.: Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14, 713–743 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, B., Liu, J.: Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14, 429–451 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Li, D., Qiao, Z.: On second order semi-implicit Fourier spectral methods for 2D Cahn–Hilliard equations. J. Sci. Comput. 70, 301–341 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, D., Qiao, Z., Tang, T.: Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54, 1653–1681 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, W., Chen, W., Wang, C., Yan, Y., He, R.: A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76(3), 1905–1937 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moldovan, D., Golubovic, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61(6), 6190 (2000)

    Article  Google Scholar 

  35. Qiao, Z., Sun, Z., Zhang, Z.: The stability and convergence of two linearized finite difference schemes for the nonlinear epitaxial growth model. Numer. Methods Partial Differ. Equ. 28, 1893–1915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qiao, Z., Sun, Z., Zhang, Z.: Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. 84, 653–674 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qiao, Z., Wang, C., Wise, S.M., Zhang, Z.: Error analysis of a finite difference scheme for the epitaxial thin film growth model with slope selection with an improved convergence constant. Int. J. Numer. Anal. Model. 14, 283–305 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schwoebel, R.L.: Step motion on crystal surfaces: II. J. Appl. Phys. 40, 614–618 (1969)

    Article  Google Scholar 

  40. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Song, H., Shu, C.-W.: Unconditional energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn–Hilliard equation. J. Sci. Comput. 73, 1178–1203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, C., Wang, X., Wise, S.M.: Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28, 405–423 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, X., Ju, L., Du, Q.: Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316, 21–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weinan, E.: Convergence of spectral methods for the Burgers’ equation. SIAM J. Numer. Anal. 29, 1520–1541 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Weinan, E.: Convergence of Fourier methods for Navier–Stokes equations. SIAM J. Numer. Anal. 30, 650–674 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, L., Ju, L., Zhao, W.: Fast high-order compact exponential time differencing Runge–Kutta methods for second-order semilinear parabolic equations. J. Sci. Comput. 67, 1043–1065 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Longshan Talent Project of SWUST 18LZX529 (K. Cheng), Hong Kong Research Council GRF Grants 15300417 and 15325816, (Z. Qiao) and NSF DMS-1418689 (C. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Lemma 2.4

First, we review the following estimate in Calculus.

Lemma A.1

Suppose that f(x) and g(x) are continuous functions, \(f (x) >0\), \(g (x) >0\), and \(\frac{f (x)}{g (x)}\) is decreasing over \((0, + \infty )\). Define \(H(x) = \frac{\int _0^x f (t) dt}{\int _0^x g(t) dt}\). Then H(x) is decreasing over \((0, + \infty )\).

Proof

Denote \(F(x) = \int _0^x f (t) dt\), \(G(x) = \int _0^x g (t) dt\), so that \(H(x) = \frac{F(x)}{G(x)}\). For any \(0< x_1 < x_2\), we make a comparison between \(H(x_1)\) and \(H (x_2)\).

We denote \(C_1 = \frac{f(x_1)}{g(x_1)}\). By the decreasing property of \(\frac{f (x)}{g (x)}\), we see that \(\frac{f (x)}{g (x)} \ge C_1\) for \(0\le x \le x_1\), and \(\frac{f (x)}{g (x)} \le C_1\) for \(x_1 \le x \le x_2\). This in turn implies that

$$\begin{aligned} f (x) \ge C_1 g(x) , \, \, \, \text{ for } 0\le x \le x_1 , \quad f (x) \le C_1 g(x) , \, \, \, \text{ for } x_1\le x \le x_2 . \end{aligned}$$
(A.1)

As a result, we get

$$\begin{aligned} \int _0^{x_1} f (t) dt \ge C_1 \int _0^{x_1} g (t) dt , \quad \int _{x_1}^{x_2} f (t) dt \le C_1 \int _{x_1}^{x_2} g (t) dt . \end{aligned}$$
(A.2)

In turn, if we denote \(A_1 = \int _0^{x_1} f (t) dt\), \(B_1 = \int _0^{x_1} g (t) dt\), \(A_2 = \int _{x_1}^{x_2} f (t) dt\), \(B_2 = \int _{x_1}^{x_2} g (t) dt\), we have

$$\begin{aligned} \frac{A_1}{B_1} \ge C_1 \ge \frac{A_2}{B_2} . \end{aligned}$$
(A.3)

Then we arrive at

$$\begin{aligned} H(x_2) = \frac{\int _0^{x_2} f (t) dt}{\int _0^{x_2} g(t) dt} = \frac{A_1 + A_2}{B_1 + B_2} \le \frac{A_1}{B_1} = H(x_1). \end{aligned}$$
(A.4)

This completes the proof for the decreasing property of H(x). \(\square \)

Next, we proceed into the proof of Lemma 2.4.

Proof

The function \(g_0 (x)\) could be represented as

$$\begin{aligned} g_0 (x) = \frac{1 - \mathrm{e}^{-x}}{x} = \frac{\int _0^x \mathrm{e}^{-t} \, dt}{\int _0^x 1 \, dt} . \end{aligned}$$
(A.5)

On the other hand, \(\frac{\mathrm{e}^{-x}}{1} = \mathrm{e}^{-x}\) is a decreasing function over \((0, +\infty )\). By Lemma A.1, we conclude that \(g_0 (x)\) is decreasing.

Similarly, \(g_1 (x)\) could be rewritten as

$$\begin{aligned} g_1 (x) = \frac{x - (1 - \mathrm{e}^{-x} )}{x^2} = \frac{\int _0^x ( 1 - \mathrm{e}^{-t} ) \, dt}{\int _0^x 2t \, dt} . \end{aligned}$$
(A.6)

Since \(\frac{1 - \mathrm{e}^{-x}}{2 x} = \frac{1}{2} g_0 (x)\) is a decreasing function over \((0, +\infty )\), an application of Lemma A.1 reveals that \(g_1 (x)\) is also decreasing.

For \(g_2 (x)\), we look at its rewritten form

$$\begin{aligned} g_2 (x) = \frac{x^2 - 2 (x - (1 - \mathrm{e}^{-x} ) )}{x^3} = \frac{\int _0^x 2 ( t - (1 - \mathrm{e}^{-t} ) ) \, dt}{\int _0^x 3 t^2 \, dt} . \end{aligned}$$
(A.7)

Since \(\frac{2 ( x - (1 - \mathrm{e}^{-x} ) )}{3 x^2} = \frac{2}{3} g_1 (x)\) is a decreasing function over \((0, +\infty )\), an application of Lemma A.1 reveals that \(g_2 (x)\) is also decreasing. This finishes the proof of the first part of Lemma 2.4.

As a direct consequence of their decreasing property, we see that \(g_0 (x) \le g_0 (0) = 1\), \(g_1 (x) \le g_1 (0) = \frac{1}{2}\) and \(g_2 (x) \le g_2 (0) = \frac{1}{3}\),     \(\forall x > 0\).

In turn, we observe that

$$\begin{aligned}&\frac{g_1 (x)}{g_0 (x)} \le \frac{g_1 (0)}{g_0 (2)} = \frac{\frac{1}{2}}{\frac{1 - \mathrm{e}^{-2}}{2} } = \frac{1}{1 - \mathrm{e}^{-2}} , \quad \text{ for } \, x \le 2 , \end{aligned}$$
(A.8)
$$\begin{aligned}&\frac{g_1 (x)}{g_0 (x)} = \frac{1 - \frac{1 - \mathrm{e}^{-x}}{x} }{1 - \mathrm{e}^{-x} } \le \frac{1}{1 - \mathrm{e}^{-2} } , \quad \text{ for } \, x \ge 2. \end{aligned}$$
(A.9)

For the function \(\frac{g_2 (x)}{g_0 (x)}\), we have

$$\begin{aligned}&\frac{g_2 (x)}{g_0 (x)} \le \frac{g_2 (0)}{g_0 (2)} = \frac{\frac{1}{3}}{\frac{1 - \mathrm{e}^{-2}}{2} } = \frac{2}{3(1 - \mathrm{e}^{-2})} , \quad \text{ for } \, x \le 2, \end{aligned}$$
(A.10)
$$\begin{aligned}&\frac{g_2 (x)}{g_0 (x)} = \frac{1 - 2 \frac{1 - \frac{1 - \mathrm{e}^{-x}}{x} }{x} }{1 - \mathrm{e}^{-x} } \le \frac{1}{1 - \mathrm{e}^{-2} } , \quad \text{ for } \, x \ge 2. \end{aligned}$$
(A.11)

Therefore, the inequalities \(\frac{g_1 (x)}{g_0 (x)} \le \frac{1}{1 - \mathrm{e}^{-2} }\), \(\frac{g_2 (x)}{g_0 (x)} \le \frac{1}{1 - \mathrm{e}^{-2} }\) are valid. This finishes the proof of Lemma 2.4. \(\square \)

Proof of Proposition 2.5

An application of Parseval equality to the discrete Fourier expansions for f and \({{\mathcal {G}}}^{(0)}_N f\), given by (2.33) and (2.37), respectively, leads to

$$\begin{aligned} \Vert f \Vert _2^2 = L^2 \sum _{k,\ell =-K}^K | {\hat{f}}_{k,\ell } |^2 , \quad \left\| {{\mathcal {G}}}^{(0)}_N f \right\| _2^2 = L^2 \sum _{k,\ell =-K}^K \frac{{\Delta t}\Lambda _{k,\ell }}{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,\ell }} } | {\hat{f}}_{k,\ell } |^2 . \end{aligned}$$
(B.1)

Meanwhile, the following observation is made:

$$\begin{aligned} \frac{{\Delta t}\Lambda _{k,\ell }}{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,\ell }} } = \frac{1}{g_0 ({\Delta t}\Lambda _{k,\ell })} . \end{aligned}$$
(B.2)

With an application of Lemma 2.4, we obtain

$$\begin{aligned} 1 = \frac{1}{g_0 (0)} \le \frac{1}{g_0 (x) } = \frac{x}{ 1 - \mathrm{e}^{-x} } \le 1+x , \quad \forall x > 0 . \end{aligned}$$
(B.3)

This in turn implies that

$$\begin{aligned} 1 \le \frac{{\Delta t}\Lambda _{k,\ell }}{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,\ell }} } \le 1+ {\Delta t}\Lambda _{k,\ell } , \quad \text{ for } \text{ any } \, k, \, \ell . \end{aligned}$$
(B.4)

Its combination with (B.1) reveals that

$$\begin{aligned} \Vert f \Vert _2^2 \le \left\| {{\mathcal {G}}}^{(0)}_N f \right\| _2^2\le & {} L^2 \sum _{k,\ell =-N}^N ( 1+ {\Delta t}\Lambda _{k,\ell }) | {\hat{f}}_{k,\ell } |^2 \nonumber \\= & {} \Vert f \Vert _2^2 + {\Delta t}( \varepsilon ^2 \Vert \Delta _N f \Vert _2^2 + \kappa \Vert \nabla _N f \Vert _2^2 ) , \end{aligned}$$
(B.5)

which in turn results in (2.40), by taking \(C_1 = 1\).

The proof of the first inequality of (2.41) follows a similar form of Fourier analysis, combined with the following identity:

$$\begin{aligned} \frac{{\Delta t}\Lambda _{k,\ell }}{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,\ell }} } \ge {\Delta t}\Lambda _{k,\ell } , \quad \forall k, \ell . \end{aligned}$$
(B.6)

For the second inequality of (2.41), we begin with the following identities

$$\begin{aligned} (L_N f)_{i,j}= & {} \sum _{k,\ell =-K}^K \Lambda _{k, \ell } {\hat{f}}_{k,\ell } \mathrm{e}^{2 \pi i ( k x_i + \ell y_j)/L}, \\ (- \Delta _N \mathrm{e}^{- L_N {\Delta t}} f )_{i,j}= & {} \sum _{k,\ell =-K}^K ( - \lambda _{k, \ell }) \mathrm{e}^{- {\Delta t}\Lambda _{k, \ell } } {\hat{f}}_{k,\ell } \mathrm{e}^{2 \pi i ( k x_i + \ell y_j)/L}, \end{aligned}$$

so that

$$\begin{aligned} \left\langle L_N f , - \Delta _N \mathrm{e}^{- L_N {\Delta t}} f \right\rangle = L^2 \sum _{k, \ell =-K}^K ( - \lambda _{k, \ell }) \Lambda _{k, \ell } \mathrm{e}^{- {\Delta t}\Lambda _{k, \ell } } | {\hat{f}}_{k,\ell } |^2 \ge 0 , \end{aligned}$$
(B.7)

since \(- \lambda _{k, \ell } \ge 0\), \(\Lambda _{k, \ell } \ge 0\), and \(\mathrm{e}^{- {\Delta t}\Lambda _{k, \ell } } \ge 0\), for any \(k, \ell \).

The proof of (2.42) and (2.43) could be carried out in the same manner; the details are left to interested readers.

For the analysis of \(G^{(1)}_N f\), with its discrete Fourier expansion given by (2.35), an application of Parseval equality gives

$$\begin{aligned} \Vert f \Vert _2^2 = L^2 \sum _{k,\ell =-K}^K | {\hat{f}}_{k,\ell } |^2 , \quad \left\| G^{(1)}_N f \right\| _2^2 = L^2 \sum _{k,\ell =-K}^K \left( \frac{1 - \frac{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,\ell }} }{{\Delta t}\Lambda _{k,\ell }} }{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,\ell }} } \right) ^2 | {\hat{f}}_{k,\ell } |^2 . \nonumber \\ \end{aligned}$$
(B.8)

On the other hand, the following observation is available:

$$\begin{aligned} \frac{1 - \frac{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,\ell }} }{{\Delta t}\Lambda _{k,\ell }} }{1 - \mathrm{e}^{- {\Delta t}\Lambda _{k,l}} } = \frac{ g_1 ({\Delta t}\Lambda _{k,\ell }) }{ g_0 ({\Delta t}\Lambda _{k,\ell }) } \le \frac{1}{1 - \mathrm{e}^{-2}} , \end{aligned}$$
(B.9)

with an application of Lemma 2.4 in the second step. Its substitution into (B.8) results in

$$\begin{aligned} \Vert f \Vert _2^2 = L^2 \sum _{k,\ell =-K}^K | {\hat{f}}_{k,\ell } |^2 , \quad \left\| G^{(1)}_N f \right\| _2^2 \le \left( \frac{1}{1 - \mathrm{e}^{-2}} \right) ^2 \Vert f \Vert _2^2 . \end{aligned}$$
(B.10)

Then we have proved the first inequality of (2.44), with \(C_4 = \frac{1}{1 - \mathrm{e}^{-2}}\).

The analysis of \(G^{(2)}_N f\) could be carried out in the same manner, and the second inequality of (2.44) is with \(C_5 = \frac{1}{1 - \mathrm{e}^{-2}}\). This finishes the proof of Proposition 2.5.

Proof of Proposition 3.2

We begin with the following expansion:

$$\begin{aligned} \nabla _N \left( f_N (U^k) - f_N (u^k) \right) = \nabla _N \nabla _N \cdot \left( g_N (U^k) - g_N (u^k) \right) . \end{aligned}$$
(C.1)

Meanwhile, we denote \(U_N^k\), \(u_N^k\) and \(e_N^k\) as the continuous extension of \(U^k\), \(u^k\) and \(e^k\), as the formula given by (2.15). We notice that \(g_N\) is defined in the sense of collocation way, at a point-wise level. Since \(g_N (U^k) - g_N (u^k)\) is the grid point interpolation of \(g (U_N^k) - g (u_N^k)\), we apply (2.18) (in Lemma 2.2) to control the aliasing error. Subsequently, we arrive at

$$\begin{aligned} \Vert \nabla _N \nabla _N \cdot ( g_N (U^k) - g_N (u^k) ) \Vert _2= & {} \Vert \nabla \nabla \cdot P_c^N ( g (U_N^k) - g (u_N^k) ) \Vert \nonumber \\\le & {} C \Vert P_c^N ( g (U_N^k) - g (u_N^k) ) \Vert _{H^2} \nonumber \\\le & {} C \Vert g (U_N^k) - g (u_N^k) \Vert _{H^2} , \end{aligned}$$
(C.2)

in which the fact that \(2 > \frac{d}{2} =1\) has been used. On the other hand, we have the following expansion for \(g (U_N^k) - g (u_N^k)\), in a similar form as (2.77):

$$\begin{aligned} g (U_N^k) - g (u_N^k) = \frac{\nabla e_N^k}{1+|\nabla u_N^k|^2} + \frac{ \nabla (U_N^k + u_N^k) \cdot \nabla e_N^k}{(1+|\nabla U_N^k |^2) (1+|\nabla u_N^k|^2)} \nabla U_N^k + \kappa \nabla e_N^k . \end{aligned}$$
(C.3)

A repeated application of Hölder inequality and Sobobev inequality leads to the following estimates:

$$\begin{aligned}&\left\| \frac{\nabla e_N^k}{1+|\nabla u_N^k|^2} + \kappa \nabla e_N^k \right\| _{H^2} \nonumber \\&\quad \le C ( \Vert U_N^k \Vert _{H^3}^2 + \Vert u_N^k \Vert _{H^3}^2 ) ( \Vert \nabla e_N^k \Vert + \Vert \Delta e_N^k \Vert + \Vert \nabla \Delta e_N^k \Vert ) , \end{aligned}$$
(C.4)
$$\begin{aligned}&\left\| \frac{ \nabla (U_N^k + u_N^k) \cdot \nabla e_N^k}{(1+|\nabla U_N^k |^2) (1+|\nabla u_N^k|^2)} \nabla U_N^k \right\| _{H^2} \nonumber \\&\quad \le C ( \Vert U_N^k \Vert _{H^3}^2 + \Vert u_N^k \Vert _{H^3}^2 ) ( \Vert \nabla e_N^k \Vert + \Vert \Delta e_N^k \Vert + \Vert \nabla \Delta e_N^k \Vert ) . \end{aligned}$$
(C.5)

Meanwhile, with the a-priori assumption (3.12), we have

$$\begin{aligned}&\Vert U_N^k \Vert _{H^3} \le C*, \nonumber \\&\Vert u_N^k \Vert _{H^3} \le \Vert U_N^k \Vert _{H^3} + \Vert e_N^k \Vert _{H^3} \le \Vert U_N^k \Vert _{H^3} + C_6 \Vert \nabla \Delta e_N^k \Vert \le C^* + C_6 := {\tilde{C}}_1 , \end{aligned}$$
(C.6)

in which \(C_6\) is a constant associated with elliptic regularity: \(\Vert e_N^k \Vert _{H^3} \le C_6 \Vert \nabla \Delta e_N^k \Vert \), since \(\int _\Omega e_N^k \, d \mathbf{x} =0\). Then we arrive at

$$\begin{aligned} \Vert \nabla _N ( f_N (U^k) - f_N (u^k) ) \Vert _2= & {} \Vert \nabla _N \nabla _N \cdot ( g_N (U^k) - g_N (u^k) ) \Vert _2 \nonumber \\\le & {} C \Vert g (U_N^k) - g (u_N^k) \Vert _{H^2} \nonumber \\\le & {} C ( \Vert U_N^k \Vert _{H^3}^2 + \Vert u_N^k \Vert _{H^3}^2 ) ( \Vert \nabla e_N^k \Vert + \Vert \Delta e_N^k \Vert + \Vert \nabla \Delta e_N^k \Vert ) \nonumber \\\le & {} C ( (C^*)^2 + {\tilde{C}}_1^2 ) C_6 \Vert \nabla \Delta e_N^k \Vert \nonumber \\\le & {} C ( (C^*)^2 + {\tilde{C}}_1^2 ) C_6 \Vert \nabla _N \Delta _N e^k \Vert . \end{aligned}$$
(C.7)

As a result, (3.13) has been established, by taking \(C_0^{(2)} = C ( (C^*)^2 + {\tilde{C}}_1^2 ) C_6\). This finishes the proof of Proposition 3.2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Qiao, Z. & Wang, C. A Third Order Exponential Time Differencing Numerical Scheme for No-Slope-Selection Epitaxial Thin Film Model with Energy Stability. J Sci Comput 81, 154–185 (2019). https://doi.org/10.1007/s10915-019-01008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01008-y

Keywords

Mathematics Subject Classification

Navigation